Skip to main content

Advertisement

Log in

Freshwater shrimps (Macrobrachium depressimanum and Macrobrachium jelskii) as biomonitors of Hg availability in the Madeira River Basin, Western Amazon

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Total mercury (THg) concentrations measured in two freshwater shrimp species (Macrobrachium depressimanum and Macrobrachium jelskii) showed a relationship with the location of artisanal and small-scale gold mining (ASGM) from the Madeira River Basin, Western Amazon. Between August 2009 and May 2010, 212 shrimp samples were collected in the confluence of the Madeira River with three of its tributaries (Western Amazon). THg concentration was quantified in the exoskeleton, hepatopancreas and muscle tissue of the shrimps by cold vapor atomic absorption spectrophotometry. There were no significant differences between the two shrimp species when samples came from the Madeira River, but Hg concentrations were significantly lower in a tributary outside the influence of the gold mining area. Average THg concentrations were higher in the hepatopancreas (up to 160.0 ng g−1) and lower in the exoskeleton and muscle tissue (10.0–35.0 ng g−1 and < 0.9–42.0 ng g−1, respectively). Freshwater shrimps from the Madeira River respond to local environmental levels of Hg and can be considered as biomonitors for environmental Hg at this spatial scale. These organisms are important for moving Hg up food webs including those that harbor economic significant fish species and thus enhancing human exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Aguirre-Rubí, J. R., Luna-Acosta, A., Etxebarría, N., Soto, M., Espinoza, F., Ahrens, M. J., & Marigómez, I. (2017). Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-017-9159-2.

  • ANVISA (1998). Agência Nacional de Vigilância Sanitária. Port. n° 685, http://bvsms.saude.gov.br/bvs/saudelegis/anvisa/1998/prt0685_27_08_1998_rep.html. Accessed in 15 March, 2016.

  • Bastos, W. R., Gomes, J. P. O., Oliveira, R. C., Almeida, R., Nascimento, E. L., Lacerda, L. D., Silveira, E. G., & Pfeiffer, W. C. (2006). Mercury in the environment and riverside population in the Madeira River Basin, Amazon, Brazil. Science of the Total Environment, 368(1), 344–351. https://doi.org/10.1016/j.scitotenv.2005.09.048.

    Article  CAS  Google Scholar 

  • Bastos, W. R., Dórea, J. G., Bernardi, J. V. E., Lautharte, L. C., Mussy, M. H., Lacerda, L. D., Malm, O. (2015). Mercury in fish of the Madeira River (temporal and spatial assessment), Brazilian Amazon. Environmental Research. 140, 191–197. https://doi.org/10.1016/j.envres.2015.03.029.

  • Briand, M. J., Bustamante, P., Bonnet, X., Churlaud, C., & Letourneur, Y. (2018). Tracking trace elements into complex coral reef trophic networks. Science of the Total Environment, 612, 1091–1104. https://doi.org/10.1016/j.scitotenv.2017.08.257.

    Article  CAS  Google Scholar 

  • Carrasco, L., Benejam, L., Benito, J., Bayon, J. M., & Díez, S. (2011). Methylmercury levels and bioaccumulation in the aquatic food web of a highly mercury-contaminated reservoir. Environment International, 37(7), 1213–1218. https://doi.org/10.1016/j.envint.2011.05.004.

    Article  CAS  Google Scholar 

  • Chumchal, M. M., Drenner, R. W., Fry, B., Hambright, K. D., & Newland, L. W. (2008). Habitat-specific differences in mercury concentrations in a top predator from a shallow lake. Transactions of the American Fisheries Society, 137(1), 195–208. https://doi.org/10.1577/T07-009.1.

    Article  Google Scholar 

  • Delgado-Alvarez, C. G., Ruelas-Inzunza, J., Osuna-López, J. L., Voltolina, D., & Frías-Espericueta, M. G. (2015). Mercury content and their risk assessment in farmed shrimp Litopenaeus vannamei from NW Mexico. Chemosphere, 119, 1015–1020. https://doi.org/10.1016/j.chemosphere.2014.08.079.

    Article  CAS  Google Scholar 

  • EPA (2001). EPA Method 1630: Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and CVAFS; U.S. Environmental Protection Agency: EPA-821-R-01-020, Office of Water, Washington DC, 49 p.

  • EPA (2002). EPA Method 1631, Revision E: Mercury in water by oxidation, purge and trap, and cold vapor atomic fluorescence spectrometry: U.S. Environmental Protection Agency, EPA-821-R-02-019, Office of Water, Washington DC, 36 p.

  • García-Dávila, C. R., & Magalhães, C. (2003). Revisão taxonômica dos camarões de água doce (Crustacea: Decapoda: Palaemonidae) da Amazônia peruana. Acta Amaz, 33(4), 663–686. https://doi.org/10.1590/S0044-59672003000400013.

    Article  Google Scholar 

  • Guimarães, J. R. D., Roulet, M., Lucotte, M., & Mergler, D. (2000). Mercury methylation potentials along a lake-forest transect in the Tapajós river floodplain, Brazilian Amazon: seasonal and vertical variations. Science of the Total Environment, 261(1-3), 91–98. https://doi.org/10.1016/S0048-9697(00)00627-6.

    Article  Google Scholar 

  • Hoang, V. A. T., Sakamoto, M., & Yamamoto, M. (2017). Mercury and selenium levels, and theur molar ratios in several species of comercial shrimp in Japan regarding the health risk of methylmercury exposure. The Journal of Toxicological Sciences, 42(4), 509–517. https://doi.org/10.2131/jts.42.509.

    Article  Google Scholar 

  • Hosseini, M., Nabavi, S. M. B., Parsa, Y., & Saadatmand, M. (2016). Mercury contamination in some marine biota species from Khuzestan shore, Persian Gulf. Toxicology and Industrial Health, 32(7), 1302–1309. https://doi.org/10.1177/0748233714555392.

    Article  CAS  Google Scholar 

  • Hothem, R. L., Bergen, D. R., Bauer, M. L., Crayon, J. J., & Meckstroth, A. M. (2007). Mercury and trace elements in crayfish from Northern California. Bulletin of Environmental Contamination and Toxicology, 79(6), 628–632. https://doi.org/10.1007/s00128-007-9304-6.

    Article  CAS  Google Scholar 

  • Khan, A. T., Weis, J. S., & D’Andrea, L. (1989). Bioaccumulation of heavy metals in two populations of grass shrimp, Palaemonetes pugio. Bulletin of Environmental Contamination and Toxicology, 42(3), 339–343. https://doi.org/10.1007/BF01699958.

    Article  CAS  Google Scholar 

  • Lacerda, L. D. (1995). Amazon mercury emissions. Nature, 374(6517), 20–21. https://doi.org/10.1038/374020a0.

    Article  Google Scholar 

  • Lacerda, L. D., Pfeiffer, W. C., Ott, A. T., & Silveira, E. G. (1989). Mercury contamination in the Madeira River, Amazon: Hg inputs to the environment. Biotropica, 21(1), 91–93. https://doi.org/10.2307/2388449.

    Article  Google Scholar 

  • Lacerda, L. D., Bastos, W. R., & Almeida, M. D. (2012). The impacts of land use changes in the mercury flux in the Madeira River, Western Amazon. Anais da Academia Brasileira de Ciências, 84(1), 69–78. https://doi.org/10.1590/S0001-37652012000100007.

    Article  CAS  Google Scholar 

  • Locardini, S. J. P., & Presley, B. J. (1996). Mercury concentrations in benthic organisms from a contaminated estuary. Marine Environmental Research, 41, 225–239.

    Article  Google Scholar 

  • Molina, C., Gibbo, F. M., Duprey, J. L., Dominguez, E., Guimarães, J. R. D., & Roulet, M. (2010). Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Science of the Total Environment, 408(16), 3382–3391. https://doi.org/10.1016/j.scitotenv.2010.04.019.

    Article  CAS  Google Scholar 

  • Palmer, S. J., & Presley, B. J. (1993). Mercury bioaccumulation by shrimp (Penaus aztecus) transplanted to Lavaca Bay, Texas. Marine Pollution Bulletin, 26(10), 564–566. https://doi.org/10.1016/0025-326X(93)90407-B.

    Article  CAS  Google Scholar 

  • Rahimi, E., & Gheysari, E. (2016). Evaluation of lead, cadmium, arsenic and mercury heavy metal residues in fish, Shrimp and Lobster Samples from Persian Gulf. Kafkas Univ Vet Fak Derg, 22, 173–178.

    Google Scholar 

  • Rainbow, P. S. (2006). Biomonitoring of heavy metal availability in the marine environment. Marine Pollution Bulletin, 31, 183–192.

    Article  Google Scholar 

  • Rainbow, P. S. (2007). Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Intern, 33(4), 576–582. https://doi.org/10.1016/j.envint.2006.05.007.

    Article  CAS  Google Scholar 

  • Simkiss, K., & Taylor, M. G. (1989). Metal fluxes across the membranes of aquatic organisms. Aquatic Sciences, 1, 173–188.

    CAS  Google Scholar 

  • Smokrowski, K. E., Lasendy, D. C., & Evans, R. D. (1998). Quantifying the uptake and release of cadmium and copper by the opossum shrimp Mysis relictal preying upon the cladoceran Daphnia magna using stable isotope tracers. Canadian Journal of Fisheries and Aquatic Sciences, 55(4), 909–916. https://doi.org/10.1139/f97-284.

    Article  Google Scholar 

  • Soares, T. M., Coutinho, D., Lacerda, L. D., Rebelo, M. F., & Moraes, O. (2011). Mercury accumulation and metallothionein expression from aquafeeds by Litopenanaeus vannamei Boone, 1931. Brazilian Journal of Biology, 71(1), 131–137. https://doi.org/10.1590/S1519-69842011000100019.

    Article  CAS  Google Scholar 

  • Tenorio, B. M., Filho, E. A. S., Neiva, G. S. M., Silva, V. A., Tenorio, F. C. A. M., Silva Themis, J., Silva, E. C. S., & Nogueira, R. A. (2017). Can fractal methods applied to video tracking detect the effects of deltamethrin pesticide or mercury on the locomotion behavior of shrimps? Ecotoxicology and Environmental Safety, 142, 243–249. https://doi.org/10.1016/j.ecoenv.2017.03.051.

    Article  CAS  Google Scholar 

  • Weeks, J. M., Rainbow, P. S., & Moore, P. G. (1992). The loss, uptake ant tissue distribution of copper and zinc during the molt cycle is an ecological series of talitrid amphipods (Crustacea:Amphipoda). Hidrobiol, 245(1), 15–25. https://doi.org/10.1007/BF00008725.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to the sampling team of UNIR and its Graduate Program in Regional Development and Environment. We thank in particular Dr. Célio Magalhães (INPA-Manaus), for the identification of shrimps.

Funding

Financial support came from CNPq/CT-Biotec (No 553269/2005-4); CNPq/CT-Amazo (N° 575920/2008-4 and N° 552331/2011-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. R. Bastos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvão, R.C.F., Holanda, I.B.B., De Carvalho, D.P. et al. Freshwater shrimps (Macrobrachium depressimanum and Macrobrachium jelskii) as biomonitors of Hg availability in the Madeira River Basin, Western Amazon. Environ Monit Assess 190, 77 (2018). https://doi.org/10.1007/s10661-018-6460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-018-6460-6

Keywords

Navigation