We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

The effects of hydraulic works and wetlands function in the Salado-River basin (Buenos Aires, Argentina)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Man-made activities exert great influences on fluvial ecosystems, with lowland rivers being substantially modified through agricultural land use and populations. The recent construction of drainage canals in the upper stretch of the Salado-River basin caused the mobilization of huge amounts of salts formerly stored in the groundwater. The main aim of this work was to analyze the effect of the discharges of those canals into the Salado-River water, under different hydrologic conditions, and the role of the wetlands and shallow lakes placed along the canals’ system. Physicochemical variables were measured and water samples were taken during times of high water, mean flows, drought, and extreme drought. The environmental variables and the plankton development were related to the hydrologic regime and reached minimum values during floods because of low temperatures and dilution. Local effects on the water’s ionic composition became pronounced during droughts because of groundwater input. Nutrient concentrations were mainly associated with point wastewater discharges. Conductivity, ion concentrations, total plankton biomass, and species richness increased in the Salado-River downstream site, after the canals’ discharges. The artificial-drainage system definitely promotes the incorporation of salts into the Salado-River basin. In this scenario, a careful hydraulic management is needed to take into account this issue of secondary salinization that threatens the economic exploitation of the region. The wetlands present in this study acted as service environments not only helping to reduce salt, nutrient, and suspended-solid concentrations downstream but also contributing a plethora of species and plankton biomass into the Salado-River main course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • American Public Health Association (1995). Standard Methods for the Examination of Water and Wastewater. 19th Ed. Washington, D.C: APHA.

  • Amoros, C., & Bornette, G. (2002). Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biology, 47(4), 761–776. https://doi.org/10.1046/j.1365-2427.2002.00905.x.

    Article  Google Scholar 

  • Andersen, T., & Hessen, D. O. (1991). Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology & Oceanography, 36(4), 807–814. https://doi.org/10.4319/lo.1991.36.4.0807.

    Article  CAS  Google Scholar 

  • Aradas, R. D., Lloyd, J., Wicks, J., Palmer, J. (2002). Groundwater problems in low elevations regional plains: the Buenos Aires province example. In: E. Bocanegra, D. Martínez, & H. Massone (Eds), Groundwater and Human Development (pp 613–623). Proceedings XXXII IAH and VI AHL SUD Congress, Mar del Plata, Argentina.

  • Badano, N. D. (2010). Modelación integrada de grandes cuencas de llanura con énfasis en la evaluación de inundaciones. Graduate Tesis: FIUBA, Universidad Nacional de Buenos Aires.

    Google Scholar 

  • Basú, B. K., & Pick, F. R. (1996). Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnology & Oceanography, 41, 1572–1577.

    Article  Google Scholar 

  • Bazzuri, M. E., Gabellone, N. A., & Solari, L. C. (2008). Variación estacional de fitoplancton en la cuenca inferior del Río Salado (Prov. Buenos Aires). Biología Acuática, 24, 137–148.

    Google Scholar 

  • Bazzuri, M. E., Gabellone, N. A., & Solari, L. C. (2010). Seasonal variation in the phytoplankton during an intensive sampling period in a saline lowland river (Buenos Aires, Argentina). River Research & Applications, 26, 766–778.

    Google Scholar 

  • Bechmann, M. E., Berge, D., Eggestad, H. O., & Vandsemb, S. M. (2005). Phosphorus transfer from agricultural areas and its impact on the eutrophication of lakes—two long-term integrated studies from Norway. Journal of Hydrology, 304(1-4), 238–250. https://doi.org/10.1016/j.jhydrol.2004.07.032.

    Article  CAS  Google Scholar 

  • Bottrell, H. H., Duncan, A., Gliwicz, Z. M., Grygierek, E., Herzig, A., Hillbricht-Ilkowska, A., Kurasawa, H., Larsson, P., & Weglenska, T. (1976). A review of some problems in zooplankton production studies. Norwegian Journal of Zoology, 24, 419–456.

    Google Scholar 

  • Buchwalter, D. B., & Luoma, S. N. (2005). Differences in dissolved cadmium and zinc uptake among stream insects: mechanistic explanations. Environmental Science & Technology, 39(2), 498–504. https://doi.org/10.1021/es0404421.

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles, M., Bundschuh, M., Gutiérrez-Cánovas, C., Kefford, B. J., Prat, N., Trobajo, R., & Schäfer, R. B. (2014). Effects of repeated salt pulses on ecosystem structure and functions in a stream mesocosm. Science of the Total Environment, 476, 634–642.

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles, M., Hawkins, C. P., Kefford, B. J., Schäfer, R. B., Dyack, B. J., Brucet, S., Buchwalter, D., Dunlop, J., Frör, O., Lazorchak, J., Coring, E., Fernandez, H. R., Goodfellow, W., González Achem, A. L., Hatfield-Dodds, S., Karimov, B. K., Mensah, P., Olson, J. R., Piscart, C., Prat, N., Ponsá, S., Schulz, C.-J., & Timpano, A. J. (2016a). Saving freshwaters from salts. Science, 351(6276), 914–916. https://doi.org/10.1126/science.aad3488.

    Article  Google Scholar 

  • Cañedo-Argüelles, M., Kefford, B. J., Piscart, C., Prat, N., Schäfer, R. B., & Schulz, C. J. (2013). Salinisation of rivers: an urgent ecological issue. Environmental Pollution, 173, 157–167. https://doi.org/10.1016/j.envpol.2012.10.011.

    Article  CAS  Google Scholar 

  • Cañedo-Argüelles, M., Sala, M., Peixoto, G., Prat, N., Faria, M., Soares, A. M. V. M., Barata, C., & Kefford, B. (2016b). Can salinity trigger cascade effects on streams? A mesocosm approach. Science of the Total Environment, 540, 3–10. https://doi.org/10.1016/j.scitotenv.2015.03.039.

    Article  CAS  Google Scholar 

  • Carol, E. S., Kruse, E., & Pousa, J. L. (2010). Eco-hydrological role of deep aquifers in the Salado sedimentary basin in the Province of Buenos Aires, Argentina. Environmental Earth Sciences, 60(4), 749–756. https://doi.org/10.1007/s12665-009-0212-4.

    Article  Google Scholar 

  • Carpenter, S. R. (2008). Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences, 105, 11039–11040.

    Article  CAS  Google Scholar 

  • Carpenter, S. R., Caraco, N. F., Correll, D. L., Howarth, R. W., Sharpley, A. N., & Smith, V. H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3), 559–568.

  • Claps, M. C., Gabellone, N. A., & Neschuk, N. C. (2009). Influence of regional factors on zooplankton structure in a saline lowland river: the Salado River (Buenos Aires Province, Argentina). River Research & Applications, 25(4), 453–471. https://doi.org/10.1002/rra.1182.

    Article  Google Scholar 

  • Cesanelli, A., & Guarracino, L. (2011). Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeology Journal, 19(3), 629–639. https://doi.org/10.1007/s10040-011-0708-3.

    Article  Google Scholar 

  • De Cabo, L., Puig, A., Arreghini, S., Olguín, H. F., Seoane, R., & Obertello, I. (2003). Physicochemical variables and plankton from the Lower Delta of the Paraná River (Argentina) in relation to flow. Hydrological Processes, 17(7), 1279–1290. https://doi.org/10.1002/hyp.1284.

    Article  Google Scholar 

  • De Ruyter Van Steveninck, E. D., Admiraal, W., Brebaart, L., Tubbing, G. M. J., & Van Zanten, B. (1992). Plankton in the River Rhine: structural and functional changes observed during downstream transport. Journal of Plankton Research, 14(10), 1351–1368. https://doi.org/10.1093/plankt/14.10.1351.

    Article  Google Scholar 

  • Descy, J.-P., & Gosselain, V. (1994). Development and ecological importance of phytoplankton in a large lowland river (River Meuse, Belgium). Hydrobiologia, 289(1-3), 139–155. https://doi.org/10.1007/BF00007415.

    Article  CAS  Google Scholar 

  • Devercelli, M. (2010). Changes in phytoplankton morpho-functional groups induced by extreme hydroclimatic events in the Middle Paraná River. Hydrobiologia, 639(1), 5–19. https://doi.org/10.1007/s10750-009-0020-6.

    Article  CAS  Google Scholar 

  • Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32(5), 1455–1462. https://doi.org/10.1016/S0043-1354(97)00370-9.

    Article  CAS  Google Scholar 

  • Dodds, W. K., Smith, V. H., & Lohman, K. (2002). Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Canadian Journal of Fisheries & Aquatic Sciences, 59(5), 865–874. https://doi.org/10.1139/f02-063.

    Article  Google Scholar 

  • Dumont, H. J., Van de Velde, I., & Dumont, S. (1975). The dry weight estimate of biomass in a selection of Cladócera, Copépoda and Rotífera from the plankton, periphyton and bentos of continental waters. Oecologia, 19(1), 75–97. https://doi.org/10.1007/BF00377592.

    Article  Google Scholar 

  • Ensign, S. H., & Doyle, M. W. (2006). Nutrient spiraling in streams and river networks. Journal of Geophysical Research: Biogeosciences, 111(G4). https://doi.org/10.1029/2005JG000114.

  • Feijoó, C. S., & Lombardo, R. J. (2007). Baseline water quality and macrophyte assemblages in Pampean streams: a regional approach. Water Research, 41(7), 1399–1410. https://doi.org/10.1016/j.watres.2006.08.026.

    Article  CAS  Google Scholar 

  • Fisher, S. G., Grimm, N. B., Martí, E., Holmes, R. M., & Jones Jr., J. B. (1998). Material spiraling in stream corridors: a telescoping ecosystem model. Ecosystems, 1(1), 19–34. https://doi.org/10.1007/s100219900003.

    Article  CAS  Google Scholar 

  • Forte Lay, J. A., Kruse, E., & Aiello, J. L. (2007). Hydrologic scenarios applied to the agricultural management of the northwest of the Buenos Aires Province, Argentina. GeoJournal, 70(4), 263–271. https://doi.org/10.1007/s10708-008-9140-1.

    Article  Google Scholar 

  • Gabellone, N. A., Claps, M. C., Solari, L. C., & Neschuk, N. C. (2005). Nutrients, conductivity and plankton in a landscape approach to a Pampean saline lowland river (Salado River, Argentina). Biogeochemistry, 75(3), 455–477. https://doi.org/10.1007/s10533-005-3273-9.

    Article  CAS  Google Scholar 

  • Gabellone, N. A., Claps, M. C., Solari, L. C., Neschuk, N. C., & Ardohain, D. M. (2013a). Spatial and temporal distribution pattern of phosphorus fractions in a saline lowland river with agricultural land use (Salado River, Buenos Aires, Argentina). Fundamental & Applied Limnology, 183, 271–286.

    Article  Google Scholar 

  • Gabellone, N. A., Solari, L. C., Claps, M. C., & Neschuk, N. C. (2008). Chemical classification of the water in a lowland river basin (Salado River, Buenos Aires, Argentina) affected by hydraulic modifications. Environmental Geology, 53(6), 1353–1363. https://doi.org/10.1007/s00254-007-0745-3.

    Article  CAS  Google Scholar 

  • Gabellone, N. A., Solari, L. C., Casco, M. A., & Claps, M. C. (2013b). Conservación del plancton y protección de las cuencas hídricas. AUGMDOMUS, 5, 100–119.

    Google Scholar 

  • Garnier, J., Némery, J., Billen, G., & Théry, S. (2005). Nutrient dynamics and control of eutrophication in the Marne River system: modeling the role of exchangeable phosphorus. Journal of Hydrology, 304(1-4), 397–412. https://doi.org/10.1016/j.jhydrol.2004.07.040.

    Article  CAS  Google Scholar 

  • Ghersa, C. M., De La Fuente, E., Suarez, S., & Leon, R. J. C. (2002). Woody species invasion in the Rolling Pampa grasslands, Argentina. Agriculture, Ecosystems & Environments, 88(3), 271–278. https://doi.org/10.1016/S0167-8809(01)00209-2.

    Article  Google Scholar 

  • González, M. H., & Fernández, A. E. (2007). Floods increasing in Buenos Aires Salado River basin, Argentina. In O. Scarpati & A. Jones (Eds.), Environmental change and rational water use (pp. 96–113). Orientación Gráfica Editora: Buenos Aires.

    Google Scholar 

  • Hart, B. T., Lake, P. S., Webb, J. A., & Grace, M. R. (2003). Ecological risk to aquatic systems from salinity increases. Australian Journal of Botany, 51(6), 689–702. https://doi.org/10.1071/BT02111.

    Article  CAS  Google Scholar 

  • Hein, T., Heiler, G., Pennetzdorfer, D., Riedler, P., Schagerl, M., & Schiemer, F. (1999). The Danube restoration project: functional aspects and planktonic productivity in the floodplain system. Regulated Rivers: Research & Management, 15(1-3), 259–270. https://doi.org/10.1002/(SICI)1099-1646(199901/06)15:1/3<259::AID-RRR539>3.0.CO;2-E.

    Article  Google Scholar 

  • Hein, T., Reckendorfer, W., Thorp, J. H., & Schiemer, F. (2005). The role of slackwater areas for biogeochemical processes in rehabilitated river corridors: examples from the Danube. Archiv fur Hydrobiologie Supplement, 155, 425–442.

    Google Scholar 

  • Herczeg, A. L., Dogramaci, S., & Leaney, F. (2001). Origin of dissolved salt in a large, semi-arid groundwater system: Murray basin, Australia. Marine & Freshwater Research, 52(1), 41–53. https://doi.org/10.1071/MF00040.

    Article  CAS  Google Scholar 

  • Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., & Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology, 35(2), 403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x.

    Article  Google Scholar 

  • Honti, M., Istvánovics, V., & Kovács, Á. S. (2010). Balancing between retention and flushing in river networks—optimizing nutrient management to improve trophic state. Science of the Total Environment, 408(20), 4712–4721. https://doi.org/10.1016/j.scitotenv.2010.06.054.

    Article  CAS  Google Scholar 

  • House, W. A., & Denison, F. H. (1998). Phosphorus dynamics in a lowland river. Water Research, 32(6), 1819–1830. https://doi.org/10.1016/S0043-1354(97)00407-7.

    Article  CAS  Google Scholar 

  • Hunt, C. W., Loder Iii, T., & Vörösmarty, C. (2005). Spatial and temporal patterns of inorganic nutrient concentrations in the Androscoggin and Kennebec Rivers, Maine. Water, Air, & Soil Pollution, 163(1-4), 303–323. https://doi.org/10.1007/s11270-005-0880-y.

    Article  CAS  Google Scholar 

  • Imbellone, P. A., & Giménez, J. E. (1998). Parent materials, buried soils and fragipans in northwestern Buenos Aires province, Argentina. Quaternary Interntional, 51, 115–126.

    Google Scholar 

  • Iriondo, M., & Kröhling, D. (2007). Geomorfología y sedimentología de la cuenca superior del río Salado (Sur de Santa Fe y NO de Buenos Aires, Argentina). Latin American Journal of Sedimentology and Basin Analysis, 14, 1–23.

    Google Scholar 

  • Izaguirre, I., O’Farrell, I., & Tell, G. (2001). Variation in phytoplankton composition and limnological features in a water-water ecotone of Lower Paraná Basin (Argentina). Freshwater Biology, 46, 63–74.

    Google Scholar 

  • Jarvie, H. P., Lycett, E., Neal, C., & Love, A. (2002). Patterns in nutrient concentrations and biological quality indices across the upper Thames river basin, UK. Science of the Total Environment, 282, 263–294.

    Article  Google Scholar 

  • Jarvie, H. P., Withers, P. J., Hodgkinson, R., Bates, A., Neal, M., Wickham, H. D., Arman, S. A., & Armstrong, L. (2008). Influence of rural land use on stream water nutrients and their ecological significance. Journal of Hydrology, 350(3-4), 166–186. https://doi.org/10.1016/j.jhydrol.2007.10.042.

    Article  CAS  Google Scholar 

  • José de Paggi, S. B. J., & Devercelli, M. (2011). Land use and basin characteristics determine the composition and abundance of the microzooplankton. Water, Air, & Soil Pollution, 218(1-4), 93–108. https://doi.org/10.1007/s11270-010-0626-3.

    Article  CAS  Google Scholar 

  • José de Paggi, S. J., & Paggi, J. C. (1998). Zooplancton de ambientes acuáticos con diferente estado trófico y salinidad. Neotropica, 44, 95–106.

    Google Scholar 

  • Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood pulse concept in river-floodplain systems. In: D. P. Dodge (Ed), Proceedings of the International Large River Symposium. Canadian Special Publication of Fisheries & Aquatic Sciences, 106, 110–117.

  • Karayanni, H., Christaki, U., Van Wambeke, F., & Dalby, A. P. (2004). Evaluations of double formalin-Lugol’s fixation in assessing number and biomass of ciliates: an example of estimation at mesoscale in NE Atlantic. Journal of Microbiological Methods, 56(3), 349–358. https://doi.org/10.1016/j.mimet.2003.11.002.

    Article  Google Scholar 

  • Kefford, B. J., Papas, P. J., Crowther, D., & Nugegoda, D. (2002). Are salts toxicants? Australasian Journal of Ecotoxicology, 8, 63–68.

    Google Scholar 

  • Kefford, B. J., Buchwalter, D., Cañedo-Argüelles, M., Davis, J., Duncan, R. P., Hoffmann, A., & Thompson, R. (2016). Salinized rivers: degraded systems or new habitats for salt-tolerant faunas? Biology Letters, 12(3), 20151072. https://doi.org/10.1098/rsbl.2015.1072.

    Article  Google Scholar 

  • Kiedrzyńska, E., & Zalewski, M. (2012). Water quality improvement through an integrated approach to point and non-point sources pollution and management of river floodplain wetlands. Ecological Water Quality–Water Treatment and Reuse, 325–342.

  • Kirk, J. T. O. (1983). Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kobayashi, T., Ralph, T. J., Ryder, D. S., Hunter, S. J., Shiel, R. J., & Segers, H. (2015). Spatial dissimilarities in plankton structure and function during flood pulses in a semi-arid floodplain wetland system. Hydrobiologia, 747(1), 19–31. https://doi.org/10.1007/s10750-014-2119-7.

    Article  CAS  Google Scholar 

  • Koch, R. W., Guelda, D. L., & Bukaveckas, P. A. (2004). Phytoplankton growth in the Ohio, Cumberland and Tennessee Rivers, USA: inter-site differences in light and nutrient limitation. Aquatic Ecology, 38(1), 17–26. https://doi.org/10.1023/B:AECO.0000021082.42784.03.

    Article  CAS  Google Scholar 

  • Kröger, R., Dunne, E. J., Novak, J., King, K. W., Mclellan, E., Smith, D. R., Strock, J., Boomer, K., Tomer, M., & Noe, G. B. (2013). Downstream approaches to phosphorus management in agricultural landscapes: regional applicability and use. Science of the Total Environment, 442, 263–274. https://doi.org/10.1016/j.scitotenv.2012.10.038.

    Article  CAS  Google Scholar 

  • Kronvang, B., Hoffmann, C. C., Svendsen, L. M., Windolf, J., Jensen, J. P., & Dørge, J. (1999). Retention of nutrients in river basins. Aquatic Ecology, 33(1), 29–40. https://doi.org/10.1023/A:1009947907811.

    Article  CAS  Google Scholar 

  • Kronvang, B., Vagstad, N., Behrendt, H., Bøgestrand, J., & Larsen, S. E. (2007). Phosphorus losses at the catchment scale within Europe: an overview. Soil Use & Management, 23(s1), 104–116. https://doi.org/10.1111/j.1475-2743.2007.00113.x.

    Article  Google Scholar 

  • Kruse, E., Carol, E., Deluchi, M., Laurencena, P., & Rojo, A. (2010). Hidroquímica subterránea en un sector de la zona deprimida del Salado. Azul: Provincia de Buenos Aires. Dissertation I Congreso Internacional de Hidrología de Llanuras.

    Google Scholar 

  • Kruse, E., & Laurencena, P. (2005). Aguas superficiales. Relación con el régimen subterráneo y fenómenos de anegamiento. In R. E. De Barrio, R. O. Etcheverry, M. F. Caballé, & E. Llambías (Eds), Geología y recursos naturales de la Provincia de Buenos Aires (pp. 313–326). 16° Congreso Geológico Argentino.

  • Kruse, E., & Zimmermann, E. D. (2002). Hidrogeología de grandes llanuras, particularidades en la llanura pampeana (Argentina). In: E. Bocanegra, D. Martínez, & H. Massone (Eds), Groundwater and Human Development (pp 2025–2038). Proceedings XXXII IAH and VI AHL SUD Congress, Mar del Plata, Argentina.

  • Lair, G. J., Zehetner, F., Fiebig, M., Gerzabek, M. H., Van Gestel, C. A. M., Hein, T., Hohensinner, S., Hsuf, P., Jones, K. C., Jordan, G., Koelmans, A. A., Poot, A., Slijkerman, D. M. E., Totsche, K. U., Bondar-Kunze, E., & Barth, J. A. C. (2009). How do long-term development and periodical changes of river–floodplain systems affect the fate of contaminants? Results from European rivers. Environmental Pollution, 157(12), 3336–3346. https://doi.org/10.1016/j.envpol.2009.06.004.

    Article  CAS  Google Scholar 

  • Lair, N. (2006). A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Research & Applications, 22(5), 567–593. https://doi.org/10.1002/rra.923.

    Article  Google Scholar 

  • Lawrence, S. G., Malley, D. F., Findlay, W. J., Maclver, M. A., & Delbaere, I. L. (1987). Method for estimating dry weight of freshwater planktonic crustaceans from measures of length and shape. Canadian Journal of Fisheries & Aquatic Sciences, 44, 264–274.

    Article  Google Scholar 

  • Ludueña, S. G. (2006). Farm-scale pounding susceptibility for potential land reclamation assessment in large flatlands, A case study in the Salado River Basin, Bs. As., Argentina. The Netherlands: Magister Tesis in Science in Geo-information Science and Earth Observation. ITC.

    Google Scholar 

  • Margalef, R. (1983). Limnología. Barcelona: Ediciones Omega.

    Google Scholar 

  • Mc-Cauley, E. (1984). The estimation of the abundance and biomass of zooplankton in samples. In J. Downing & F. Rigler (Eds.), A manual on methods for the assessment of secondary productivity in fresh waters (pp. 228–265). Blackwell Science Publishers.

  • Menden-Deuer, S., & Lessard, E. J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology & Oceanography, 45(3), 569–579. https://doi.org/10.4319/lo.2000.45.3.0569.

    Article  CAS  Google Scholar 

  • Meybeck, M. (1996). River water quality, global ranges time and space variabilities. Verhandlungen - Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 26, 81–96.

    Google Scholar 

  • Meybeck, M. (2003). Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 358(1440), 1935–1955. https://doi.org/10.1098/rstb.2003.1379.

    Article  CAS  Google Scholar 

  • Moscuzza, C., Volpedo, A. V., Ojeda, C., & Fernández Cirelli, A. (2007). Water quality index as a tool for river assessment in agricultural areas in the Pampean plains of Argentina. Journal of Urban & Environmental Engineering, 1(1), 18–25. https://doi.org/10.4090/juee.2007.v1n1.018025.

    Article  Google Scholar 

  • Mugni, H. (2008). Concentración de nutrientes y toxicidad de pesticidas en aguas superficiales de cuencas rurales. PhD Tesis: FCNyM, Universidad Nacional de La Plata.

    Google Scholar 

  • Neal, C., Hilton, J., Wade, A. J., Neal, M., & Wickham, H. (2006). Chlorophyll a in the rivers of eastern England. Science of the Total Environment, 365(1-3), 84–104. https://doi.org/10.1016/j.scitotenv.2006.02.039.

    Article  CAS  Google Scholar 

  • Neal, C., Jarvie, H. P., Withers, P. J., Whitton, B. A., & Neal, M. (2010). The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments. Science of the Total Environment, 408(7), 1485–1500. https://doi.org/10.1016/j.scitotenv.2009.12.020.

    Article  CAS  Google Scholar 

  • Neschuk, N. C. (2001). Limnología del Río Salado (Buenos Aires) y el uso de la tierra en su cuenca. PhD Tesis: FCNyM, Universidad Nacional de La Plata.

    Google Scholar 

  • Padisák, J., & G.-Tóth, L. (1991). Some aspects of the ecology of subdominant green algae in a large, nutrient limited shallow lake (Balaton, Hungary). Archiv für Protistenkunde, 139(1-4), 225–242. https://doi.org/10.1016/S0003-9365(11)80022-9.

    Article  Google Scholar 

  • Palmer, J., Suter, S. N., & Aradas, R. D. (2002). The Río Salado Basin in Argentina: an integrated master plan. Water & Environment Journal, 16(2), 141–146. https://doi.org/10.1111/j.1747-6593.2002.tb00385.x.

    Article  Google Scholar 

  • Picard, V., & Lair, N. (2005). Spatio-temporal investigations on the planktonic organisms of the Middle Loire (France), during the low water period: biodiversity and community dynamics. Hydrobiologia, 551(1), 69–86. https://doi.org/10.1007/s10750-005-4451-4.

    Article  Google Scholar 

  • Pilkaitytë, R., Schoor, A., & Schubert, H. (2004). Response of phytoplankton communities to salinity changes–a mesocosm approach. Hydrobiologia, 513(1), 27–38. https://doi.org/10.1023/B:hydr.0000018162.50270.54.

    Article  Google Scholar 

  • Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., & Stromberg, J. C. (1997). The natural flow regime. Bioscience, 47(11), 769–784. https://doi.org/10.2307/1313099.

    Article  Google Scholar 

  • Putt, M., & Stoeckner, D. K. (1989). An experimentally determined carbon: volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnology & Oceanography, 34(6), 1097–1103. https://doi.org/10.4319/lo.1989.34.6.1097.

    Article  Google Scholar 

  • Reddy, K. R., & De Laune, R. D. (2008). Biogeochemistry of wetlands: science and applications. Boca Raton, FL: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/9780203491454.

    Book  Google Scholar 

  • Reddy, K. R., Kadlec, R. H., Flaig, E., & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science & Technology, 29(1), 83–146. https://doi.org/10.1080/10643389991259182.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., & Descy, J.-P. (1996). The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie, Supplement Large Rivers, 10, 161–187.

    Google Scholar 

  • Rojas Molina, F., & José de Paggi, S. (2008). Zooplankton in the Paraná River floodplain (South America) before and after the invasion of Limnoperna fortunei (Bivalvia). Wetlands, 28(3), 695–702. https://doi.org/10.1672/07-179.1.

    Article  Google Scholar 

  • Rojo, A., Kruse, E., Laurencena, P., Deluchi, M., & Carol, E. (2006). Relación de la capa freática y las obras de regulación en la región Vallimanca–Las Flores. Dissertation VIII Congreso Latinoamericano de Hidrología Subterránea. Asunción, Paraguay.

  • Rossetti, G., Viaroli, P., & Ferrari, I. (2009). Role of abiotic and biotic factors in structuring the metazoan plankton community in a lowland river. River Research & Applications, 25(7), 814–835. https://doi.org/10.1002/rra.1170.

    Article  Google Scholar 

  • Scarpati, O. E., Specha, L., & Capriolo, A. (2002). Occurrence of severe floods in the Salado river basin, Buenos Aires Province, Argentina. Mitigation and Adaptation Strategies for Global Change, 7(3), 285–301. https://doi.org/10.1023/A:1024427613595.

    Article  Google Scholar 

  • Schäfer, R. B., Kefford, B. J., Metzeling, L., Liess, M., Burgert, S., Marchant, R., Pettigrove, V., Goonan, P., & Nugegoda, D. (2011). A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. Science of the Total Environment, 409(11), 2055–2063. https://doi.org/10.1016/j.scitotenv.2011.01.053.

    Article  CAS  Google Scholar 

  • Schagerl, M., Drozdowski, I., Angeler, D. G., Hein, T., & Preiner, S. (2009). Water age – a major factor controlling phytoplankton community structure in a reconnected dynamic floodplain (Danube, Regelsbrunn, Austria). Journal of Limnology, 68(2), 274–287. https://doi.org/10.4081/jlimnol.2009.274.

    Article  Google Scholar 

  • Shiel, R. J., & Koste, W. (1983). Rotifer communities of billabongs in northern and south-eastern Australia. Hydrobiologia, 104(1), 41–47. https://doi.org/10.1007/BF00045950.

    Article  Google Scholar 

  • SMN (2016). Servicio Meteorológico Nacional, Argentina [http://www.smn.gov.ar/].

  • Sparks, R. E. (1995). Need for ecosystem management of large rivers and their floodplains. Bioscience, 168–182.

  • Sun, J., & Liu, D. (2003). Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research, 25(11), 1331–1346. https://doi.org/10.1093/plankt/fbg096.

    Article  Google Scholar 

  • Tanco, R., & Kruse, E. (2001). Prediction of seasonal water-table fluctuations in La Pampa and Buenos Aires, Argentina. Hydrogeology Journal, 39, 339–347.

    Article  Google Scholar 

  • Tartari, G. A., & Mosello, R. (1997). Metodologia analitiche e conrolli di qualitá nel laboratorio chimico dell’ instituto di idrobiologia. In Consiglio Nazionale delle Ricerche. Istituto Italiano: di Idrobiolgia. na.

    Google Scholar 

  • Thorp, J. H., Black, A. R., & Haag, K. H. (1994). Zooplancton assemblages in the Ohio River. Seasonal, tributary, and navigation dam effects. Canadian Journal of Fisheries & Aquatic Sciences, 51(7), 1634–1643. https://doi.org/10.1139/f94-164.

    Article  Google Scholar 

  • Turner, R. E., Rabalais, N. N., Justic, D., & Dortch, Q. (2003). Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry, 64(3), 297–317. https://doi.org/10.1023/A:1024960007569.

    Article  CAS  Google Scholar 

  • Viglizzo, E. F., & Frank, F. C. (2006). Ecological interactions, feedbacks, thresholds and collapses in the Argentine Pampas in response to climate and farming during the last century. Quaternary International, 158, 22–126.

    Article  Google Scholar 

  • Vilches, C., Giorgi, A., Mastrángelo, M., & Ferrari, L. (2011). Non-point contamination homogenizes the water quality of Pampean streams. Bulletin of Environmental Contamination and Toxicology, 87(2), 147–151. https://doi.org/10.1007/s00128-011-0312-1.

    Article  CAS  Google Scholar 

  • Wahl, D. H., Goodrich, J., Nannini, M. A., Dettmers, J. M., & Soluk, D. A. (2008). Exploring riverine zooplankton in three habitats of the Illinois River ecosystem: where do they come from? Limnology & Oceanography, 53(6), 2583–2593. https://doi.org/10.4319/lo.2008.53.6.2583.

    Article  Google Scholar 

  • Walker, B. H. (1992). Biodiversity and ecological redundancy. Conservation Biology, 6(1), 18–23. https://doi.org/10.1046/j.1523-1739.1992.610018.x.

    Article  Google Scholar 

  • Weilhoefer, C. L., Pan, Y., & Eppard, S. (2008). The effects of river floodwaters on floodplain wetland water quality and diatom assemblages. Wetlands, 28(2), 473–486. https://doi.org/10.1672/07-114.1.

    Article  Google Scholar 

  • Wetzel, R. G., & Likens, G. E. (1991). Limnological analyses (2nd ed.). New York: Springer-Verlag. https://doi.org/10.1007/978-1-4757-4098-1.

    Book  Google Scholar 

  • Williams, W. D. (1999). Salinization: a major threat to water resources in the arid and semi-arid regions of the world. Lakes & Reservoirs, 4, 85–91.

    Article  Google Scholar 

  • Withers, P. J. A., & Jarvie, H. P. (2008). Delivery and cycling of phosphorus in rivers: a review. Science of the Total Environment, 400(1-3), 379–395. https://doi.org/10.1016/j.scitotenv.2008.08.002.

    Article  CAS  Google Scholar 

  • Wolf, K. L., Noe, G. B., & Ahn, C. (2013). Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands. Journal of Environmental Quality, 42(4), 1245–1255. https://doi.org/10.2134/jeq2012.0466.

    Article  CAS  Google Scholar 

  • Woltemade, C. J. (2000). Ability of restored wetlands to reduce nitrogen and phosphorus concentrations in agricultural drainage water. Journal of Soil & Water Conservation, 55, 303–309.

    Google Scholar 

  • Zalewski, M., Bis, B., Kapinska, M., Frankiewicz, P., & Puchalski, W. (1998). The importance of the riparian ecotone and river hydraulics for sustainable basin-scale restoration scenarios. Aquatic Conservation: Marine & Freshwater Ecosystems, 8(2), 287–307. https://doi.org/10.1002/(SICI)1099-0755(199803/04)8:2<287::AID-AQC274>3.0.CO;2-R.

    Article  Google Scholar 

  • Zalewski, M. (2007). Ecohydrology as a concept and management tool. In C. King, J. Ramkissoon, M. Clüsener-Godt, & Z. Adeel (Eds.), Water and ecosystems: managing water in diverse ecosystems to ensure human well-being (pp. 39–53). Canada: UNU-INWEH UNESCO MAB.

    Google Scholar 

  • Zalizniak, L., Kefford, B. J., & Nugegoda, D. (2009). Effects of different ionic compositions on survival and growth of Physa acuta. Aquatic Ecology, 43(1), 145–156. https://doi.org/10.1007/s10452-007-9144-9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina), and the paper constitutes Scientific Contribution N° 1,000 of the Institute of Limnology Dr. Raúl A. Ringuelet (ILPLA, CCT La Plata CONICET, UNLP). We are most grateful to Dr. Hernán Benítez for his help in the laboratory procedures, and we would like to thank the anonymous reviewers for their useful comments on the manuscript. María Elisa Bazzuri holds a fellowship from Comisión Nacional de Investigaciones Científicas y Técnicas CONICET (Argentina). Dr. Donald F. Haggerty, a retired academic career investigator and native English speaker, edited the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Bazzuri.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazzuri, M.E., Gabellone, N.A. & Solari, L.C. The effects of hydraulic works and wetlands function in the Salado-River basin (Buenos Aires, Argentina). Environ Monit Assess 190, 99 (2018). https://doi.org/10.1007/s10661-017-6448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6448-7

Keywords

Navigation