Skip to main content

Advertisement

Log in

Shoreline change and potential sea level rise impacts in a climate hazardous location in southeast coast of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Climate change impact on the environment makes the coastal areas vulnerable and demands the evaluation of such susceptibility. Historical changes in the shoreline positions and inundation based on projected sea-level scenarios of 0.5 and 1 m were assessed for Nagapattinam District, a low-lying coastal area in the southeast coast of India, using high-resolution Shuttle Radar Topography Mission data; multi-dated Landsat satellite images of 1978, 1991, 2003, and 2015; and census data of 2011. Image processing, geographical information system, and digital shoreline analysis system methods were used in the study. The shoreline variation indicated that erosion rate varied at different time scales. The end point rate indicated the highest mean erosion of − 3.12 m/year, occurred in 73% of coast between 1978 and 1991. Weighted linear regression analysis revealed that the coast length of 83% was under erosion at a mean rate of − 2.11 m/year from 1978 to 2015. Sea level rise (SLR) impact indicated that the coastal area of about 14,122 ha from 225 villages and 31,318 ha from 272 villages would be permanently inundated for the SLR of 0.5 and 1 m, respectively, which includes agriculture, mangroves, wetlands, aquaculture, and forest lands. The loss of coastal wetlands and its associated productivity will severely threaten more than half the coastal population. Adaptation measures in people participatory mode, integrated into coastal zone management with a focus on sub-regional coastal activities, are needed to respond to the consequences of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahammed, K. K. B., Mahendra, R. S., & Pandey, A. S. (2016). Coastal vulnerability assessment for eastern coast of India, Andhra Pradesh by using geospatial technique. Geoinformatics & Geostatistics, 4(3), 1–8. https://doi.org/10.4172/2327-4581.1000146.

  • Alemayehu, F., Richard, O., Kinyanjui, M. J., & Oliverv, W. (2014). Assessment of shoreline changes in the period 1969–2010 in Watamuarea, Kenya. Global Journal of Science Frontier Research, 14(6), 19–31.

    Google Scholar 

  • Alongi, D. M. (2008). Mangrove forests: resilience, protection from tsunami, and responses to global climate change. Estuarine Coastal and Shelf Science, 76(1), 1–13. https://doi.org/10.1016/j.ecss.2007.08.024.

    Article  Google Scholar 

  • Appeaning Addo, K., Walkden, M., & Mills, J. P. (2008). Detection, measurement and prediction of shoreline recession in Accra, Ghana. Journal of Photogrammetry & Remote Sensing, 63(5), 543–558. https://doi.org/10.1016/j.isprsjprs.2008.04.001.

    Article  Google Scholar 

  • Arnell, N. W., & Gosling, S. N. (2016). The impacts of climate change on river flood risk at the global scale. Climatic Change, 134(3), 387–401. https://doi.org/10.1007/s10584-014-1084-5.

    Article  Google Scholar 

  • Ball, M. C. (1988). Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning and salt balance. Australian Journal of Plant Physiology, 15(15), 447–464. https://doi.org/10.1071/PP9880447.

    Article  Google Scholar 

  • Blankespoor, B., Dasgupta, S., & Laplante, B. (2012). Sea-level rise and coastal wetlands: Impacts and costs, Policy research working paper 6277. Washington, DC: The World Bank. https://doi.org/10.1596/1813-9450-6277.

    Book  Google Scholar 

  • Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing (fifth ed.). New York: Guilford Press.

    Google Scholar 

  • Demirkesen, A. C., Evrendilek, F., & Berberoglu, S. (2008). Quantifying coastal inundation vulnerability of Turkey to sea-level rise. Environmental Monitoring and Assessment, 138(1–3), 101–106. https://doi.org/10.1007/s10661-007-9746-7.

    Article  Google Scholar 

  • Duke, N. C., Ball, M. C., & Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7(1), 27–47. https://doi.org/10.2307/2997695.

    Article  Google Scholar 

  • Ellison, J. C. (2015). Vulnerability assessment of mangroves to climate change and sea-level rise impacts. Wetlands Ecology and Management, 32(2), 115–137. https://doi.org/10.1007/s11273-014-9397-8.

    Article  Google Scholar 

  • Ford, M. (2013). Shoreline changes interpreted from multi-temporal aerial photographs and high resolution satellite images: Wotje Atoll, Marshall Islands. Remote Sensing of Environment, 135, 130–140. https://doi.org/10.1016/j.rse.2013.03.027.

    Article  Google Scholar 

  • Gilman, E. L., Ellison, J., Duke, N. C., & Field, C. (2008). Threats to mangroves from climate change and adaptation options: a review. Aquatic Botany, 89(2), 237–250. https://doi.org/10.1016/j.aquabot.2007.12.009.

    Article  Google Scholar 

  • Gutierrez, B. T., Williams, S. J., & Thieler, E. R. (2007). Potential for shoreline changes due to sea-level rise along the U.S. mid-Atlantic region. U.S. Geological Survey, Virginia open file report 2007–1278, 26p.

  • Hennecke, W. G., Greve, C. A., Cowell, P. J., & Thom, B. G. (2004). GIS-based coastal behavior modeling and simulation of potential land and property loss: Implications of sea-level rise at Collaroy/Narrabeen beach, Sydney (Australia). Coastal Management, 32(4), 449–470. https://doi.org/10.1080/08920750490487485.

    Article  Google Scholar 

  • IPCC (2014). Climate change 2014: synthesis report. Contribution of working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, Pachauri RK, Meyer LA (Ed.) Geneva, 151 pp. http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf. Accessed 1 Jun 2017.

  • Jana, A. B., & Hegde, A. V. (2016). GIS based approach for vulnerability assessment of the Karnataka coast, India. Hindawi Publishing Corporation Advances in Civil Engineering., 2016, 1–10. https://doi.org/10.1155/2016/5642523.

    Article  Google Scholar 

  • Jayanthi, M. (2011). Monitoring brackishwater aquaculture development using multi-spectral satellite data and GIS—a case study near Pichavaram mangroves south-east coast of India. Indian Journal of Fisheries, 58, 85–89.

    Google Scholar 

  • Jayanthi, M., Muralidhar, M., Kumaran, M., & Vijayan, K. K. (2017a). Improving shrimp farm design in flood-prone areas of India, Global Aquaculture Advocate, accessed online https://www.aquaculturealliance.org/advocate/shrimp-farm-design-improvements-india. Accessed 1 Dec 2017.

  • Jayanthi, M., Thirumurthy, S., Muralidhar, M., Kumaran, M., Samynathan, M., Ashokkumar, J., & Vijayan, K. K. (2017b). Remote sensing and GIS based planning for climate resilient aquaculture. ISBN No: 978–81–932937-4-4. Publication:Central Institute of Brackishwater Aquaculture, Chennai.

  • Joesidawati, M. I., & Suntoyo. (2016). Shoreline change in Tuban district, east Java using geospatial and digital shoreline analysis system (DSAS) techniques. International Journal of Oceans and Oceanography, 10(2), 235–246.

    Google Scholar 

  • Khan, A. S., Ramachandran, A., Usha, N., Punitha, S., & Selvam, V. (2012). Predicted impact of the sea level rise at Vellar Coleroon estuarine region of Tamil Nadu coast in India: mainstreaming adaptation as a coastal zone management option. Ocean & Coastal Management, 69, 327–339. https://doi.org/10.1016/j.ocecoaman.2012.08.005.

    Article  Google Scholar 

  • Kumar, T. S., Mahendra, R. S., Nayak, S., Radhakrishnan, K., & Sahu, K. C. (2010). Coastal vulnerability assessment for Orissa state, east coast of India. Journal of Coastal Research, 26(3), 523–534. https://doi.org/10.2112/09-1186.1.

    Article  Google Scholar 

  • Lichter, M., & Felsenstein, D. (2012). Assessing the costs of sea-level rise and extreme flooding at the local level: a GIS-based approach. Ocean & Coastal Management, 59, 47–62. https://doi.org/10.1016/j.ocecoaman.2011.12.020.

    Article  Google Scholar 

  • Mageswaran, T., Mohan, V. R., Selvan, S. C., Arumugam, T., Usha, T., & Kankara, R. S. (2015). Assessment of shoreline changes along Nagapattinam coast using geospatial techniques. International Journal of Geomatics and Geosciences, 5(4), 555–563.

    Google Scholar 

  • Maiti, S., & Bhattacharya, A. K. (2009). Shoreline change analysis and its application to prediction: a remote sensing and statistics based approach. Marine Geology, 257(1–4), 11–23. https://doi.org/10.1016/j.margeo.2008.10.006.

    Article  Google Scholar 

  • Martinich, J., Neumann, J., Ludwig, L., & Jantarasami, L. (2013). Risks of sea level rise to disadvantaged communities in the United States. Mitigation and Adaptation Strategies for Global Change, 18(2), 169–185. https://doi.org/10.1007/s11027-011-9356-0.

    Article  Google Scholar 

  • McGranahan, G., Balk, D., & Anderson, B. (2007). The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization, 19(1), 17–37. https://doi.org/10.1177/0956247807076960.

    Article  Google Scholar 

  • Mohan, G. S., & Jairaj, P. G. (2014). Coastal vulnerability assessment along Kerala coast using remote sensing and GIS. International Journal of Scientific & Engineering Research, 5(7), 228–234.

    Google Scholar 

  • Morton, R. A., Miller, T. L., & Moore, L. J. (2004). National Assessment of Shoreline Change: Part1 Historical shoreline changes and associated coastal land loss along the U.S Gulf of Mexico: U.S geological survey Open-file report 2004–1043, 45p.

  • Mujabar, P. S., & Chandrasekar, N. (2013). Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arabian Journal of Geosciences, 6(3), 647–664. https://doi.org/10.1007/s12517-011-0394-4.

    Article  Google Scholar 

  • Natesan, U., Parthasarathy, A., Vishnunath, R., Jeba Kumar, G. E., & Ferrer, V. A. (2015). Monitoring long term shoreline changes along Tamil Nadu, India using geospatial techniques. Aquatic Procedia, 4, 325–332. https://doi.org/10.1016/j.aqpro.2015.02.044.

    Article  Google Scholar 

  • NRSA. (1995). Integrated mission for sustainable development (IMSD) technical guidelines. Hyderabad: National Remote Sensing Agency.

    Google Scholar 

  • Pajak, M. J., & Leatherman, S. (2002). The high water line as shoreline indicator. Journal of Coastal Research, 18(2), 329–337.

    Google Scholar 

  • Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vazquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1–11. https://doi.org/10.1016/j.rse.2012.02.024.

    Article  Google Scholar 

  • Perez-Velazquez, M., González-Felix, M. L., Jaimes-Bustamente, F., Martínez-Cordova, L. R., Trujillo-Villalba, D. A., & Davis, D. A. (2007). Investigation of the effects of salinity and dietary protein level on growth and survival of pacific white shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 38(4), 475–485. https://doi.org/10.1111/j.1749-7345.2007.00121.x.

    Article  Google Scholar 

  • Pilkey, O. H., & Cooper, J. A. G. (2004). Society and sea level rise. Science, 303(5665), 1781–1782. https://doi.org/10.1126/science.1093515.

    Article  Google Scholar 

  • Pugh, D. (2004). Changing sea levels: Effects of tides, weather and climate. Cambridge: Cambridge University Press 265 pp. ISBN 0–521–53218-3.

    Google Scholar 

  • Pye, K., & Blott, S. J. (2006). Coastal processes and morphological change in the Dunwich-Sizewell area, Suffolk, UK. Journal of Coastal Research, 22(3), 453–473. https://doi.org/10.2112/05-0603.1.

    Article  Google Scholar 

  • Rao, K. N., Subraelu, P., Rao, T. V., Malini, B. H., Ratheesh, R., Bhattacharya, S., Rajawat, A. S., & Ajai. (2008). Sea level rise and coastal vulnerability: an assessment of Andhra Pradesh coast, India through remote sensing and GIS. Journal of Coastal Conservation, 12(4), 195–207. https://doi.org/10.1007/s11852-009-0042-2.

    Article  Google Scholar 

  • Selvam, V., Ganappazham, L., Navamuniyammal, M., Ravichandran, K. K., & Karunagaran, K. K. (2002). Atlas of Mangrove Wetlands of India, part 1— Tami Nadu (pp. 1–100). Chennai: M.S. Swaminathan Research Foundation.

    Google Scholar 

  • Selvan, C. S., Kankara, R. S., & Rajan, B. (2014). Assessment of shoreline changes along Karnataka coast, India using GIS & Remote sensing techniques. Indian Journal of Geo-Marine Sciences, 43(7), 1286–1291.

    Google Scholar 

  • Shackley, S., & Deanwood, R. (2003). Constructing social futures for climate-change impacts and response studies: building qualitative and quantitative scenarios with the participation of stakeholders. Climate Research, 24, 71–90. https://doi.org/10.3354/cr024071.

    Article  Google Scholar 

  • Spalding, M., McIvor, A., Tonneijck, F. H., Tol, S., & Van Eijk, P. (2014). Mangroves for coastal defense:Guidelines for coastal managers and policy makers. University of Cambridge:  Wetlands International and the Nature Conservancy. 

  • Sun, G., Ranson, K. J., Kharuk, V. I., & Kovacs, K. (2003). Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of Environment, 88(4), 401–411. https://doi.org/10.1016/j.rse.2003.09.001.

    Article  Google Scholar 

  • Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L., & Ayhan, E. (2009). Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change: U.S. geological survey open-file report 2008–1278. https://woodshole.er.usgs.gov/project-pages/DSAS/version4/. Accessed 13 Mar 2017.

  • To, D. V., & Thao, P. T. P. (2008). A shoreline analysis using DSAS in Nam Dinh coastal area. International Journal of Geoinformatics, 4(1), 37–42.

    Google Scholar 

  • Vidya, R., Biradar, R. S., Inamda, A. B., Srivastava, S., & Pikle, M. (2015). Assessment of shoreline changes of Alibag coast (Maharashtra, India) using remote sensing and GIS. Journal of Marine Biological Association of India, 57(2), 83–89. https://doi.org/10.6024/jmbai.2015.57.2.1876-12.

    Google Scholar 

  • Walsh, K. J. E., Betts, H., Church, J., Pittock, A. B., McInnes, K. L., Jackett, D. R., & McDougall, T. J. (2004). Using sea level rise projections for urban planning in Australia. Journal of Coastal Research, 20(2), 586–598. https://doi.org/10.2112/1551-5036(2004)020[0586:USLRPF]2.0.CO;2.

    Article  Google Scholar 

  • Wigley, T. M. L. (2005). The climate change commitment. Science, 307(5716), 1766–1769. https://doi.org/10.1126/science.1103934.

    Article  CAS  Google Scholar 

  • Williams, A. T., Giardino, A., & Pranzini, E. (2016). Canons of coastal engineering in the United Kingdom: seawalls/groynes, a century of change? Journal of Coastal Research, 32(5), 1196–1211. https://doi.org/10.2112/JCOASTRES-D-15-00213.1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the funding support from the National Innovations in Climate Resilient Agriculture (NICRA) project of Indian Council of Agriculture Research (ICAR). We would like to thank Mrs. P. Anandhi for her assistance in the work. Special thanks to two learned anonymous reviewers for the valuable inputs and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marappan Jayanthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayanthi, M., Thirumurthy, S., Samynathan, M. et al. Shoreline change and potential sea level rise impacts in a climate hazardous location in southeast coast of India. Environ Monit Assess 190, 51 (2018). https://doi.org/10.1007/s10661-017-6426-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6426-0

Keywords

Navigation