Skip to main content

Advertisement

Log in

Variability in the phytoplankton community of Kavaratti reef ecosystem (northern Indian Ocean) during peak and waning periods of El Niño 2016

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

El Niño, an interannual climate event characterized by elevated oceanic temperature, is a prime threat for coral reef ecosystems worldwide, owing to their thermal threshold sensitivity. Phytoplankton plays a crucial role in the sustenance of reef trophodynamics. The cell size of the phytoplankton forms the “master morphological trait” with implications for growth, resource acquisition, and adaptability to nutrients. In the context of a strong El Niño prediction for 2015–2016, the present study was undertaken to evaluate the variations in the size-structured phytoplankton of Kavaratti reef waters, a major coral atoll along the southeast coast of India. The present study witnessed a remarkable change in the physicochemical environment of the reef water and massive coral bleaching with the progression of El Niño 2015–2016 from its peak to waning phase. The fluctuations observed in sea surface temperature, pH, and nutrient concentration of the reef water with the El Niño progression resulted in a remarkable shift in phytoplankton size structure, abundance, and community composition of the reef waters. Though low nutrient concentration of the waning phase resulted in lower phytoplankton biomass and abundance, the diazotroph Trichodesmium erythraeum predominated the reef waters, owing to its capability of the atmospheric nitrogen fixation and dissolved organic phosphate utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ampou, E. E., Johan, O., Menkes, C. E., Niño, F., Birol, F., Ouillon, S., & Andréfouët, S. (2017). Coral mortality induced by the 2015–2016 El-Niño in Indonesia: the effect of rapid sea level fall. Biogeosciences, 14(4), 817–826. https://doi.org/10.5194/bg-14-817-2017.

    Article  Google Scholar 

  • Arthur, R. (2000). Coral bleaching and mortality in three Indian reef regions during an El Niño Southern Oscillation event. Current Science, 79(12), 1723–1729.

    Google Scholar 

  • Arthur, R., Done, T. J., Marsh, H., & Harriott, V. (2006). Local processes strongly influence postbleaching benthic recovery in the Lakshadweep Islands. Coral Reefs, 25(3), 427–440.

  • Baker, A. C., Glynn, P. W., & Riegl, B. (2008). Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuarine Coastal and Shelf. Science, 80(4), 435–471.

    Google Scholar 

  • Banse, K. (1959). On upwelling and bottom trawling off the southwest coast of India. Journal of Marine Biology Association India, 1, 33–49.

    Google Scholar 

  • Bell, P. R., & Elmetri, I. (1995). Ecological indicators of large-scale eutrophication in the Great Barrier Reef lagoon. OceanographicLiterature Review, 12(42), 1145.

    Google Scholar 

  • Canale, R. P., & Vogel, A. H. (1974). Effects of temperature on phytoplankton growth. Journal of Sanitary Engineering Division, 100(1), 231–241.

    Google Scholar 

  • Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., & Carpenter, E. J. (1997). Trichodesmium, a globally significant marine cyanobacterium. Science, 276(5316), 1221–1229. https://doi.org/10.1126/science.276.5316.1221.

    Article  CAS  Google Scholar 

  • Capone, D. G., Burns, J. A., Montoya, J. P., Subramaniam, A., Mahaffey, C., Gunderson, T., Michaels, A. F., & Carpenter, E. J. (2005). Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochemical Cycles, 19(2). https://doi.org/10.1029/2004GB002331.

  • Carte, B. K. (1996). Biomedical potential of marine natural products: marine organisms are yielding novel molecules for use in basic research and medical applications. Bioscience, 46, 271–286.

    Article  Google Scholar 

  • Chen, S., Wu, R., Chen, W., Yu, B., & Cao, X. (2016). Genesis of westerly wind bursts over the equatorial western Pacific during the onset of the strong 2015–2016 El Niño. Atmospheric Science Letters, 17(7), 384–391. https://doi.org/10.1002/asl.669.

    Article  Google Scholar 

  • Chisholm, S. W. (1992). Phytoplankton size. In P. G. Falkowski & A. G. Woodhead (Eds.), Primary productivity and biogeochemical cycles in the sea (pp. 213–237). New York: Plenum Press.

    Chapter  Google Scholar 

  • Cinner, J. E., McClanahan, T. R., MacNeil, M. A., Graham, N. A. J., Daw, T. M., Mukminin, A., Feary, D. A., Rabearisoa, A. L., Wamukota, A., Jiddawi, N., Campbell, S. J., Baird, A. H., Januchowski-Hartley, F. A., Hamed, S., Lahari, R., Morove, T., & Kuange, J. (2012). Comanagement of coral reef social-ecological systems. Proceedings of the National Academy of Sciences, 109(14), 5219–5222. https://doi.org/10.1073/pnas.1121215109.

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2015). PRIMER v7: user manual/tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  • English, S., Wilkinson, C., & Baker, V. (1997). Survey manual for tropical marine resources. Townsville: Australian Institute of Marine Science.

    Google Scholar 

  • Furnas, M. (2007). Intra-seasonal and inter-annual variations in phytoplankton biomass, primary production and bacterial production at North West Cape, Western Australia: links to the 1997–1998 El Niño event. Continental Shelf Research, 27(7), 958–980. https://doi.org/10.1016/j.csr.2007.01.002.

    Article  Google Scholar 

  • Fushimi, K. (1987). Variation of carbon dioxide partial pressure in the western North Pacific surface water during the 1982/83 El Niño event. Tellus B, 39(1–2), 214–227. https://doi.org/10.3402/tellusb.v39i1-2.15339.

    Article  Google Scholar 

  • Gadgil, S., & Francis, P. A. (2016). El Niño and the Indian rainfall in June. Current Science, 110, 1010–1022.

    Article  Google Scholar 

  • Garate-Lizarraga, I., & Beltrones, D. A. S. (1998). Time variation in phytoplankton assemblages in a subtropical lagoon system after the 1982–1983 “El Niño” event (1984 to 1986). Pacific Science, 52(1), 79–97.

    CAS  Google Scholar 

  • Garrison, D. L., Gowing, M. M., & Hughes, M. P. (1998). Nano- and microplankton in the northern Arabian Sea during the Southwest monsoon, August–September 1995: a US–JGOFS study. Deep Sea Research II, 45(10-11), 2269–2299. https://doi.org/10.1016/S0967-0645(98)00071-X.

    Article  Google Scholar 

  • Garrison, D. L., Gowing, M. M., Hughes, M. P., Campbell, L., Caron, D. A., Dennett, M. R., Shalapyonok, A., Olson, R. J., Landry, M. R., Brown, S. L., & Liu, H. B. (2000). Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep Sea Research II, 47(7), 1387–1422. https://doi.org/10.1016/S0967-0645(99)00148-4.

    Article  Google Scholar 

  • Gray, S. E., DeGrandpre, M. D., Langdon, C., & Corredor, J. E. (2012). Short-term and seasonal pH, pCO2 and saturation state variability in a coral-reef ecosystem. Global Biogeochemical Cycles, 26(3), GB3012. https://doi.org/10.1029/2011GB004114.

    Article  Google Scholar 

  • Guildford, S. J., & Hecky, R. E. (2000). Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: is there a common relationship? Limnology and Oceanography, 45(6), 1213–1223. https://doi.org/10.4319/lo.2000.45.6.1213.

    Article  CAS  Google Scholar 

  • Heil, C. A., Revilla, M., Glibert, P. M., & Murasko, S. (2007). Nutrient quality drives differential phytoplankton community composition on the southwest Florida shelf. Limnology and Oceanography, 52(3), 1067–1078. https://doi.org/10.4319/lo.2007.52.3.1067.

    Article  CAS  Google Scholar 

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., & Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301(5635), 929–933. https://doi.org/10.1126/science.1085046.

    Article  CAS  Google Scholar 

  • IMD (2016). http://www.imd.gov.in. Accessed 2016.

  • James, P. S. B. R. (2011). The Lakshadweep: islands of ecological fragility, environmental sensitivity and anthropogenic vulnerability. Journal of Coastal. Environment, 2(1), 9–25.

    Google Scholar 

  • Joseph, P. V., Eischeid, J. K., & Pyle, R. J. (1994). Interannual variability of the onset of the Indian summer monsoon and its association with atmospheric features, El Niño, and sea surface temperature anomalies. Journal of Climate, 7(1), 81–105. https://doi.org/10.1175/1520-0442(1994)007<0081:IVOTOO>2.0.CO;2.

    Article  Google Scholar 

  • Kelley, R. (2009). Indo Pacific coral finder. See www.byoguides.com.

  • Legendre, L., & Rassoulzadegan, F. (1995). Plankton and nutrient dynamics in marine waters. Ophelia, 41(1), 153–172. https://doi.org/10.1080/00785236.1995.10422042.

    Article  Google Scholar 

  • Lindell, D., & Post, A. F. (1995). Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnology and Oceanography, 40(6), 1130–1141. https://doi.org/10.4319/lo.1995.40.6.1130.

    Article  Google Scholar 

  • Lough, J. M. (2000). 1997-98: Unprecedented thermal stress to coral reefs? Geophysical Research Letters, 27(23), 3901–3904. https://doi.org/10.1029/2000GL011715.

    Article  Google Scholar 

  • Madhu, N. V., Balachandran, K. K., Martin, G. D., Jyothibabu, R., Thottathil, S. D., Nair, M., Joseph, T., & Kusum, K. K. (2010). Short-term variability of water quality and its implications on phytoplankton production in a tropical estuary (Cochin backwaters—India). Environmental Monitoring and Assessment, 170(1-4), 287–300. https://doi.org/10.1007/s10661-009-1232-y.

    Article  CAS  Google Scholar 

  • Maranón, E., Cermeno, P., Latasa, M., & Tadonléké, R. D. (2012). Temperature, resources, and phytoplankton size structure in the ocean. Limnology and Oceanography, 57(5), 1266–1278. https://doi.org/10.4319/lo.2012.57.5.1266.

    Article  Google Scholar 

  • McKinnon, A. D., Richardson, A. J., Burford, M. A., & Furnas, M. J. (2007). Vulnerability of Great Barrier Reef plankton to climate change. In J. E. Johnson & P. A. Marshall (Eds.), Climate change and the Great Barrier Reef (pp. 122–152). Australia: Great Barrier Reef Marine Park authority and Australian Greenhouse office.

    Google Scholar 

  • McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in Earth science. Science, 314(5806), 1740–1745. https://doi.org/10.1126/science.1132588.

    Article  CAS  Google Scholar 

  • Mitbavkar, S., & Anil, A. C. (2011). Tiniest primary producers in the marine environment: an appraisal from the context of waters around India. Current Science, 100(7), 986–988.

    Google Scholar 

  • Normile, D. (2016). El Niño’s warmth devastating reefs worldwide. Science, 352(6281), 15–16. https://doi.org/10.1126/science.352.6281.15.

    Article  CAS  Google Scholar 

  • Pillai, C. S. G. (1996). Coral reefs of India, their conservation and management. In N. G. Menon & C. S. G. Pillai (Eds.), Marine Biodiversity Conservation and Management. Cochin: ICAR.

    Google Scholar 

  • Pillai, C. S. G., & Jasmine, S. (1989). The coral fauna of Lakshadweep. CMFRI Bulletin, 43, 179–195.

    Google Scholar 

  • Racault, M. F., Raitsos, D. E., Berumen, M. L., Brewin, R. J., Platt, T., Sathyendranath, S., & Hoteit, I. (2015). Phytoplankton phenology indices in coral reef ecosystems: application to ocean-color observations in the Red Sea. Remote Sensing of Environment, 160, 222–234. https://doi.org/10.1016/j.rse.2015.01.019.

    Article  Google Scholar 

  • Roxy, M., Gualdi, S., Drbohlav, H. K. L., & Navarra, A. (2011). Seasonality in the relationship between El Niño and Indian Ocean dipole. Climate Dynamics, 37(1–2), 221–236. https://doi.org/10.1007/s00382-010-0876-1.

    Article  Google Scholar 

  • Rückert, G. V., & Giani, A. (2004). Effect of nitrate and ammonium on the growth and protein concentration of Microcystis viridis Lemmermann (Cyanobacteria). Brazilian. Journal of Botany, 27, 325–331.

    Google Scholar 

  • Sahu, B. K., Begum, M., Kumarasamy, P., Vinithkumar, N. V., & Kirubagaran, R. (2014). Dominance of Trichodesmium and associated biological and physico-chemical parameters in coastal waters of Port Blair, South Andaman Island. Indian Journal of Geo-Marine Sciences, 43, 1–7.

    Google Scholar 

  • SenGupta, R., Mores, C., Kureishy, T. W., Sankaranarayanan, V. N., Jana, T. K., Naqvi, S. W. A., & Rajagopal, M. D. (1979). Chemical oceanography of the Arabian Sea: part IV—Laccadive Sea. Indian Journal of Geo-Marine Sciences, 8, 215–221.

    CAS  Google Scholar 

  • Shenoi, S. S. C., Shankar, D., & Shetye, S. R. (1999). On the sea surface temperature high in the Lakshadweep Sea before the onset of the southwest monsoon. Journal of Geophysical Research Oceans, 104(C7), 15703–15712. https://doi.org/10.1029/1998JC900080.

    Article  Google Scholar 

  • Smith, S. V. (1984). Phosphorus versus nitrogen limitation in the marine environment. Limnology and Oceanography, 29(6), 1149–1160. https://doi.org/10.4319/lo.1984.29.6.1149.

    Article  CAS  Google Scholar 

  • Sohm, J. A., & Capone, D. G. (2006). Phosphorus dynamics of the tropical and subtropical north Atlantic: Trichodesmium spp. versus bulk plankton. Marine Ecology Progress Series, 317, 21–28. https://doi.org/10.3354/meps317021.

    Article  CAS  Google Scholar 

  • Sommer, U. (2000). Scarcity of medium-sized phytoplankton in the northern Red Sea explained by strong bottom-up and weak top-down control. Marine Ecology Progress Series, 197, 19–25. https://doi.org/10.3354/meps197019.

    Article  Google Scholar 

  • Spalding, M. D., Ravilious, C., & Green, E. P. (2001). World atlas of coral reefs. Berkeley: University of California Press.

    Google Scholar 

  • Stramma, L., Fischer, T., Grundle, D. S., Krahmann, G., Bange, H. W., & Marandino, C. A. (2016). Observed El Niño conditions in the eastern tropical Pacific in October 2015. Ocean Science, 12(4), 861–873. https://doi.org/10.5194/os-12-861-2016.

    Article  Google Scholar 

  • Suresh, V. R., & Mathew, K. J. (1999). Studies on phytoplankton productivity in Kavaratti atoll, Lakshadweep. Indian Journal of Fisheries, 46(4), 401–403.

    Google Scholar 

  • Szmant-Froelich, A. S. (1983). Functional aspects of nutrient cycling on coral reefs. In M. L. Reaka (Ed.), The ecology of deep shallow coral reefs (pp. 133–139). Pennsylvania: Forgotten Books.

    Google Scholar 

  • Tada, K., Sakai, K., Nakano, Y., Takemura, A., & Montani, S. (2003). Size-fractionated phytoplankton biomass in coral reef waters off Sesoko Island, Okinawa, Japan. Journal of Plankton Research, 25(8), 991–997. https://doi.org/10.1093/plankt/25.8.991.

    Article  CAS  Google Scholar 

  • Tomas, C. R. (1997). Identifying marine phytoplankton. New York: Academic.

    Google Scholar 

  • Utermöhl, H. (1931). Neue Wege in der quantitativen Erfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons). Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie, 5, 567−596

  • Venkataraman, K. (2011). Coral reefs of India. In D. Hopley (Ed.), Encyclopedia of modern coral reefs, structure, form and process (pp. 267–275). Netherland: Springer. https://doi.org/10.1007/978-90-481-2639-2_64.

    Chapter  Google Scholar 

  • Yool, A., & Tyrrell, T. (2003). Role of diatoms in regulating the ocean’s silicon cycle. Global Biogeochemical Cycles, 17(4). https://doi.org/10.1029/2002GB002018.

  • Zhang, Z., Lowe, R., Falter, J., & Ivey, G. (2011). A numerical model of wave-and current-driven nutrient uptake by coral reef communities. Ecological Modelling, 222(8), 1456–1470. https://doi.org/10.1016/j.ecolmodel.2011.01.014.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research program was supported by the Institutional project OLP 1210 of CSIR–National Institute of Oceanography. The first author is thankful to the Council of Scientific and Industrial Research for a post-doctoral fellowship (CSIR-RA). This is a CSIR-NIO contribution number 6137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kusum Komal Karati.

Electronic supplementary material

Supplementary Figure 1

Morphology of a Trichodes miumerythraeam trichome (a) individual and (b) colony observed during the waning phase. (GIF 46 kb)

High Resolution Image (TIFF 8077 kb)

Supplementary Figure 2

Non-metric multidimensional scaling (NMDS) plot of sampling locations based on the abundance of phytoplankton species (p- peak phase, w- waning phase). (GIF 1 kb)

High Resolution Image (TIFF 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karati, K.K., Vineetha, G., Madhu, N.V. et al. Variability in the phytoplankton community of Kavaratti reef ecosystem (northern Indian Ocean) during peak and waning periods of El Niño 2016. Environ Monit Assess 189, 653 (2017). https://doi.org/10.1007/s10661-017-6369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6369-5

Keywords