Skip to main content

Variation in biochemical constituents and master elements in common seaweeds from Alexandria Coast, Egypt, with special reference to their antioxidant activity and potential food uses: prospective equations

Abstract

Biochemical constituents and master elements (Pb, Cr, Cd, Fe, Cu, Zn, Hg, B, Al, SO4 2−, Na, K, Li, Ca, Mg, and F) were investigated in six different seaweed species from Abu Qir Bay in the Egyptian Mediterranean Sea coast. The moisture level ranged from 30.26% in Corallina mediterranea to 77.57% in Padina boryana. On dry weight basis, the ash contents varied from 25.53% in Jania rubens to 88.84% in Sargassum wightii. The protein contents fluctuated from 8.26% in S. wightii to 28.01% in J. rubens. Enteromorpha linza showed the highest lipids (4.66%) and carbohydrate contents (78.95%), whereas C. mediterranea had the lowest lipid (0.5%), and carbohydrate contents (38.12%). Chlorophylls and carotenoid contents varied among the species. Total antioxidant capacity of the tested green seaweeds had the highest activities followed by brown and red seaweeds which had a similar trend of phenol and tannins contents. High reducing power was observed in all tested seaweeds extract except Ulva lactuca. Brown species had the highest amount of elements followed by red and green seaweeds. Notably, SO4 2− recorded the highest level in the tested green species (108.05 mg/g dry weight (DW)). The Ca/Mg and K/Na ratios reflected highly significant difference between seaweed species. This study keeps an eye on 29 parameters and by applying stepwise multiple regression analysis, prospective equations have been set to describe the interactions between these parameters inside seaweeds. Accordingly, the tested seaweeds can be recommended as a source of healthy food with suitable ion quotient and estimated daily intake values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aleem, A. A. (1993). The marine algae of Alexandria Egypt, Ed (Vol. 138, pp. 1–55). Alexandria: University of Alexandria Egypt.

    Google Scholar 

  2. Almela, C., Algora, S., Benito, V., Clemente, M. J., Devesa, V., Súñer, M. A., Vélez, D., & Montoro, R. (2002). Heavy metal, total arsenic and inorganic arsenic contents of algae food products. Journal of Agricultural and Food Chemistry, 50(4), 918–923. https://doi.org/10.1021/jf0110250.

    CAS  Article  Google Scholar 

  3. AOAC. (2000). Official methods of analysis of AIAC International (16th ed.). Washington: AOAC Int.

    Google Scholar 

  4. APHA-AWWA-WPCF. (1995). APHA standard methods for the examination of water and wastewater (12th ed.p. 769). New York: American Public Health Association.

    Google Scholar 

  5. APHA-AWWA-WPCF. (1999). Standard methods for the examination of water and wastewater (20th ed.p. 1139). Washington: American Public Health Association.

    Google Scholar 

  6. Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innovation in Engineering and Management, 5, 56–66.

    Google Scholar 

  7. Barbarino, E., & Lourenco, S. O. (2005). An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. Journal of Applied Phycology, 17(5), 447–460. https://doi.org/10.1007/s10811-005-1641-4.

    CAS  Article  Google Scholar 

  8. Besada, V., Andrade, J. M., Schultze, F., & González, J. J. (2009). Heavy metals in edible seaweeds commercialised for human consumption. Journal of Marine Systems, 75(1-2), 305–313. https://doi.org/10.1016/j.jmarsys.2008.10.010.

    Article  Google Scholar 

  9. Bligh, E. G., & Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Canadian Journal of Physiology and Pharmacology, 37, 911–917.

    CAS  Google Scholar 

  10. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3.

    CAS  Article  Google Scholar 

  11. Broadley, M., Brown, P., Cakmak, I., Rengel, Z., & Zhao, F. (2012). Function of nutrients: micronutrients. In P. Marschner (Ed.), Marschner’s Mineral nutrition of higher plants (3rd ed., pp. 191–284). London: Academic. https://doi.org/10.1016/B978-0-12-384905-2.00007-8.

    Chapter  Google Scholar 

  12. Bruland, K. W., Donat, J. R., & Hutchins, D. T. (1991). Interactive influences of bioactive trace metals on biological production in oceanic waters. Limnology and Oceanography, 36(8), 1555–1577. https://doi.org/10.4319/lo.1991.36.8.1555.

    CAS  Article  Google Scholar 

  13. Carfagna, S., Lanza, N., Salbitani, G., Basile, A., Sorbo, S., & Vona, V. (2013). Physiological and morphological responses of lead or cadmium exposed Chlorella sorokiniana 211-8K (Chlorophyceae). Springerplus, 2, 1–7.

    Article  CAS  Google Scholar 

  14. Carlson, L., & Erlandsson, B. (1991). Effects of salinity on the uptake of radionuclides by Fucus vesiculosus L. Journal of Environmental Radioactivity, 13(4), 309–322. https://doi.org/10.1016/0265-931X(91)90004-Y.

    CAS  Article  Google Scholar 

  15. Carrano, C. J., Schellenberg, S., Amin, S. A., Green, D. H., & Küpper, F. C. (2009). Boron and marine life: a new look at an enigmatic bioelement. Marine Biotechnology, 11(4), 431–440. https://doi.org/10.1007/s10126-009-9191-4.

    CAS  Article  Google Scholar 

  16. Chakraborty, S., & Bhattacharya, T. (2012). Nutrient composition of marine benthic algae found in the Gulf of Kutch coastline, Gujarat, India. Journal of Algal Biomass Utilization, 3, 32–38.

    Google Scholar 

  17. Chbani, A., Majed, S., & Mawlawi, H. (2015). Mineral content of Mediterranean seaweeds, Padina pavonica L. (Pheophytae), Ulva lactuca L. and Ulva linza L. (Chlorophytae) for biofertilizing use. International Journal of Horticultural Science and Technology, 2, 133–140.

    CAS  Google Scholar 

  18. Chen, A. H., Yang, C. Y., Chen, C. Y., Chen, C. Y., & Chen, C. W. (2009). The chemically cross linked metal-complexed chitosans for comparative adsorptions of Cu (II), Zn (II), Ni (II) and Pb (II) ions in aqueous medium. Journal of Hazardous Material., 163(2–3), 1068–1075. https://doi.org/10.1016/j.jhazmat.2008.07.073.

    CAS  Article  Google Scholar 

  19. Choi, Y.-S., Kum, J.-S., Jeon, K.-H., Park, J.-D., Choi, H.-W., Hwang, K.-E., Jeong, T.-J., Kim, Y.-B., & Kim, C.-J. (2015). Effects of edible seaweed on physicochemical and sensory characteristics of reduced-salt frankfurters. Korean Journal of Food Science of Animal Resources, 35(6), 748–756. https://doi.org/10.5851/kosfa.2015.35.6.748.

    Article  Google Scholar 

  20. Chuda, Y., Ohnishi-Kameyama, M., & Nagata, T. (1997). Identification of the forms of boron in seaweed by 11B NMR. Phytochemistry, 46(2), 209–213. https://doi.org/10.1016/S0031-9422(97)00284-7.

    CAS  Article  Google Scholar 

  21. Clementi, E., Raimondi, D. L., & Reinhardt, W. P. (1963). Atomic screening constants from SCF functions. Journal of Chemical Physics, 38(11), 2686–2689. https://doi.org/10.1063/1.1733573.

    CAS  Article  Google Scholar 

  22. Costa, S., Crespo, D., Henriques, B. M. G., Pereira, E., Duarte, A. C., & Pardal, M. A. (2011). Kinetics of mercury accumulation and its effects on Ulva lactuca growth rate at two salinities and exposure conditions. Water Air Soil Pollution, 217(1-4), 689–699. https://doi.org/10.1007/s11270-010-0620-9.

    CAS  Article  Google Scholar 

  23. CRN (2011). Council for Responsible Nutrition. Crnusa.org. Retrieved 3–30.

  24. Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311–4330. https://doi.org/10.1016/S0043-1354(03)00293-8.

    CAS  Article  Google Scholar 

  25. De Faria, G. S. M., Hayashi, L., & Monteiro, A. R. (2014). Effect of drying temperature on carrageenan yield and quality of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) cultivated in Brazil. Journal of Applied Phycology, 26, 917–922.

    Google Scholar 

  26. De Vasconcellos, A. P., Nieto, F. B., & Crema, L. M. (2006). Chronic lithium treatment has antioxidant properties but does not prevent oxidative damage induced by chronic variate stress. Neurochemical Research, 31(9), 1141–1151. https://doi.org/10.1007/s11064-006-9139-2.

    CAS  Article  Google Scholar 

  27. Deckert, J. (2005). Cadmium toxicity in plants: is there any analogy to its carcinogenic effect in mammalian cells? Biometals, 18(5), 475–481. https://doi.org/10.1007/s10534-005-1245-0.

    CAS  Article  Google Scholar 

  28. Dhargalkar, V.K. (1979). Biochemical studies on Ulva reticulate Forsskal (pp. 40). Proceeding on International Symposium on Marine Algae of the Indian Ocean Region, CSMCRI, Bhavnagar.

  29. Dougan, W. K., & Wilson, A. L. (1974). The absorptiometric determination of aluminium in water. A comparison of some chromogenic reagents and the development of an improved method. Analyst, 99(1180), 413–430. https://doi.org/10.1039/an9749900413.

    CAS  Article  Google Scholar 

  30. Duan, X. J., Zhang, W. W., Li, X. M., & Wang, B. G. (2006). Evaluation of antioxidant property of extract and fractions obtained from red alga Polysiphonia urceolata. Food Chemistry, 95(1), 37–43. https://doi.org/10.1016/j.foodchem.2004.12.015.

    CAS  Article  Google Scholar 

  31. Dubois, M., Giles, K. A., Hamilton, J. K., Reborsand, P. A., & Smith, F. (1956). Calorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356. https://doi.org/10.1021/ac60111a017.

    CAS  Article  Google Scholar 

  32. Ekman, P., Yu, S., & Pedersen, M. (1991). Effects of altered salinity, darkness and algal nutrient status on floridoside and starch content, α-galactosidase activity and agar yield of cultivated Gracilaria sordida. British Phycological Journal, 26(2), 123–131. https://doi.org/10.1080/00071619100650091.

    Article  Google Scholar 

  33. El-Said, G. F. (2013). Bioaccumulation of key metals and other contaminants by seaweeds from the Egyptian Mediterranean Sea coast in relation to human health risk. Human and Ecological Risk Assessment, 19(5), 1285–1305. https://doi.org/10.1080/10807039.2012.708253.

    CAS  Article  Google Scholar 

  34. El-Said, G. F., & El-Sikaily, A. (2013). Chemical composition of some seaweed from Mediterranean Sea coast, Egypt. Environmental Monitoring and Assessment., 185(7), 6089–6099. https://doi.org/10.1007/s10661-012-3009-y.

    CAS  Article  Google Scholar 

  35. Emsley, J. (1998). The elements (3rd ed.). Oxford: Clarendon Press.

    Google Scholar 

  36. Fairweather-Tait, S., & Hurrell, R. F. (1996). Bioavailability of minerals and trace elements. Nutrition Research Reviews, 9(01), 295–324. https://doi.org/10.1079/NRR19960016.

    CAS  Article  Google Scholar 

  37. Farasat, M., Khavari-Nejada, R. A., Nabavib, S. M. B., & Namjooyan, F. (2014). Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iranian Journal of Pharmaceutical Research, 13(1), 163–170.

    CAS  Google Scholar 

  38. Feng, Q.-M., Feng, B., & Yi-ping, L. U. (2013). Influence of copper ions and calcium ions on adsorption of CMC on chlorite. Transactions of Nonferrous Metals Society of China, 23(1), 237–242. https://doi.org/10.1016/S1003-6326(13)62451-6.

    CAS  Article  Google Scholar 

  39. Fernández-Martínez, R., Rucandio, I., Gόmez-Pinilla, I., Borlaf, F., García, F., & Larrea, M. T. (2015). Evaluation of different digestion systems for determination of trace mercury in seaweeds by cold vapour atomic fluorescence spectrometry. Journal of Food Composition and Analysis, 38, 7–12.

  40. Fleurence, J. (1999). Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology, 10(1), 25–28. https://doi.org/10.1016/S0924-2244(99)00015-1.

    CAS  Article  Google Scholar 

  41. Fleury, N., & Lahaye, M. (1991). Chemical and physico-chemical characterisation of fibres from Laminaria digitata (kombubreton): a physiological approach. Journal of the Science of Food and Agriculture, 55(3), 389–400. https://doi.org/10.1002/jsfa.2740550307.

    CAS  Article  Google Scholar 

  42. Gaete, J., Rojas-Barahona, C. A., Olivares, E., & Araya, R. (2016). Brief report: association between psychological sense of school membership and mental health among early. Journal of Adolescence, 50, 1–5. https://doi.org/10.1016/j.adolescence.2016.04.002.

    Article  Google Scholar 

  43. García-Casal, M. N., Pereira, A. C., Leets, I., Ramìrez, J., & Quiroga, M. F. (2007). High iron content and bioavailability in humans from four species of marine algae. The Journal of Nutrition, 137(12), 2691–2695.

    Google Scholar 

  44. Grant, C. (2001). Light intensity influences on algal pigments, proteins and carbohydrates: implications for pigment-based chemotaxonomy. Ph.D. Thesis. Faculty of The Charles E. Schmidt College of Science. Florida Atlantic University, USA.

  45. Greger, M., & Johansson, M. (2004). Aggregation effects due to aluminum adsorption to cell walls of the unicellular green alga Scenedesmus obtusiusculus. Phycological Research, 52(1), 53–58. https://doi.org/10.1111/j.1440-1835.2004.tb00315.x.

    CAS  Article  Google Scholar 

  46. Grosso, C., Andrade, P., Valentao, P., Mouga, T., & Jager, A. (2011). Seaweeds: new source of MAO-A inhibiting compounds. Planta Medica, 77, PM 69.

    Article  Google Scholar 

  47. Guiry, M. D., & Guiry, G. M. (2011). Algae base. World-wide electronic publication. Galway: National University of Irel http://www.algaebase.org.

    Google Scholar 

  48. Hall, D. T. (2002). Protean careers in and out of organizations. Thousand Oaks: Sage.

    Google Scholar 

  49. Harnedy, P. A., & Fitz Gerald, R. J. (2011). Bioactive proteins, peptides, and amino acids from macroalgae. Journal of Phycology, 47(2), 218–232. https://doi.org/10.1111/j.1529-8817.2011.00969.x.

    CAS  Article  Google Scholar 

  50. Health Consultation, Land Crab Evaluation, National Oceanographic Atmospheric Administration Data. (2006). Isla deVieques Vieques (p. 26). Puerto Rico: Department of Health and Human Services Agency for Toxic Substances and Disease Registry Division of Health Assessment and Consultation.

    Google Scholar 

  51. Heo, S. J., Park, E. J., Lee, K. W., & Jeon, Y. J. (2005). Antioxidant activities enzymatic extracts from brown seaweeds. Bioresource Technology, 96(14), 1613–1623. https://doi.org/10.1016/j.biortech.2004.07.013.

    CAS  Article  Google Scholar 

  52. Herbicide risk assessment for the aquatic plant management final supplemental environmental impact statement (2001). Appendix C, Volume 3, 2, 4-D, February (pp. 435). Publication Number 00-10-043, Prepared by: Compliance Services International 1112, Alexander Avenue, Tacoma, WA 98421. http://waprt.bizland.com/store/index.html.

  53. Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: functional food applications and legislation. Journal of Applied Phycology, 23(3), 543–597. https://doi.org/10.1007/s10811-010-9632-5.

    CAS  Article  Google Scholar 

  54. Huang, J. W., Pellet, D. M., Papernik, L. A., & Kochian, L. V. (1996). Aluminum interactions with voltage-dependent calcium transport on plasma membrane vesicles isolated from roots of aluminum-sensitive and -resistance wheat cultivars. Plant Physiology, 110(2), 561–569. https://doi.org/10.1104/pp.110.2.561.

    CAS  Article  Google Scholar 

  55. Huerta-Diaz, M. A., de León-Chavira, F., Lares, M. L., Chee-Barragán, A., & Siqueiros-Valencia, A. (2007). Iron, manganese and trace metal concentrations in seaweeds from the central west coast of the Gulf of California. Applied Geochemistry, 22(7), 1380–1392. https://doi.org/10.1016/j.apgeochem.2007.03.052.

    CAS  Article  Google Scholar 

  56. Indu, H., & Seenivasan, R. (2013). In vitro antioxidant activity of selected seaweeds from southeast coast of India. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 474–484.

    Google Scholar 

  57. Informatics Inc. (1973). GRAS (generally recognised as safe) food ingredients: ammonium ion (pp. 221–235). Washington, DC: US Department of Commerce, National Technical Information Service.

    Google Scholar 

  58. Ismail, M. M., Gheda, S. F., & Pereira, I. (2016). Variation in bioactive compounds in some seaweeds from Abo Qir bay, Alexandria, Egypt. Rendiconti Lincei, 27(2), 269–279. https://doi.org/10.1007/s12210-015-0472-8.

    Article  Google Scholar 

  59. Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural populations. Biochemie und Physiologie der Pflanzen, 167(2), 191–194. https://doi.org/10.1016/S0015-3796(17)30778-3.

    CAS  Article  Google Scholar 

  60. Jha, B., Reddy, C. R. K., Thakur, M. C., & Rao, M. U. (2009). Seaweeds of India, the diversity and distribution of seaweeds of the Gujarat Coast (p. 215). Dordrecht: Springer.

    Google Scholar 

  61. Jindal, K. K., & Singh, R. N. (1975). Phenolic content in male and female Carica papaya: a possible physiological marker for sex identification of vegetable seedlings. Physiologia Plantarum, 33(1), 104–107. https://doi.org/10.1111/j.1399-3054.1975.tb03774.x.

    CAS  Article  Google Scholar 

  62. Jing, H., & Kitts, D. D. (2002). Chemical and biochemical properties of casein-sugar Maillard reaction products. Food and Chemical Toxicology, 40(7), 1007–1015. https://doi.org/10.1016/S0278-6915(02)00070-4.

    CAS  Article  Google Scholar 

  63. Jothinayagi, N., & Anbazhagan, C. (2009). Heavy metal monitoring of Rameswaram coast by some Sargassum species. American-Eurasian Journal of Scientific Research, 4(2), 73–80.

    CAS  Google Scholar 

  64. Julkunen-Titto, R. (1985). Phenol constituents in the leaves of northern willows methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 33(2), 213–217. https://doi.org/10.1021/jf00062a013.

    Article  Google Scholar 

  65. Juneja, A., Ceballos, R. M., & Murthy, G. S. (2013). Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies, 6(9), 4607–4638. https://doi.org/10.3390/en6094607.

    Article  CAS  Google Scholar 

  66. Kannan, S. (2014). FT-IR and EDS analysis of the seaweeds Sargassum wightii (brown algae) and Gracilaria corticata (red algae). International Journal of Current Microbiology and Applied Sciences, 3, 341–351.

    Google Scholar 

  67. Khairy, H. M., & El-Shafay, S. M. (2013). Seasonal variations in the biochemical composition of some common seaweed species from the coast of Abu Qir Bay, Alexandria, Egypt. Oceanologia, 55(2), 435–452. https://doi.org/10.5697/oc.55-2.435.

    Article  Google Scholar 

  68. Khaled, A., Hessein, A., Abdel-Halim, A. M., & Morsy, F. M. (2014). Distribution of heavy metals in seaweeds collected along Marsa-Matrouh beaches, Egyptian, Mediterranean Sea. Egyptian Journal of Aquatic Research, 40(4), 363–371. https://doi.org/10.1016/j.ejar.2014.11.007.

    Article  Google Scholar 

  69. Kiss, S. A., Forster, T., & Dongo, A. (2004). Absorption and effect of the magnesium content of a mineral water in the human body. Journal of the American College of Nutrition, 23(6), 758S–762S. https://doi.org/10.1080/07315724.2004.10719424.

    CAS  Article  Google Scholar 

  70. Kokilam, G., & Vasuki, S. (2014). Biochemical and phytochemical analysis on Ulva fasciata and Caulerpa taxifolia. International Journal of Pharmaceutical Sciences and Research, 4, 7–11.

    Article  Google Scholar 

  71. Kremer, B. P., & Markham, J. W. (1982). Primary metabolic effects of cadmium in the brown alga, Laminaria saccharina. Zeitschrift für Pflanzenphysiologie, 108(2), 125–130. https://doi.org/10.1016/S0044-328X(82)80063-9.

    CAS  Article  Google Scholar 

  72. Krzesłowska, M. (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiologiae Plantarum, 33(1), 35–51. https://doi.org/10.1007/s11738-010-0581-z.

    Article  CAS  Google Scholar 

  73. Kuda, T., & Ikemori, T. (2009). Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chemistry, 112(3), 575–581. https://doi.org/10.1016/j.foodchem.2008.06.008.

    CAS  Article  Google Scholar 

  74. Kumar, J. I. N., Kumar, R. N., Amb, M. K., Bora, A., & Chakraborty, S. (2010). Variation of biochemical composition of eighteen marine macroalgae collected from Okha coast, Gulf of Kutch, India. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9, 404–410.

    CAS  Google Scholar 

  75. Macalady, D. L. (1998). Perspectives in environmental chemistry. Oxford: Oxford University Press.

    Google Scholar 

  76. Manivannan, K., Thirumaran, G., Karthikai, D. G., Anantharaman, P., & Balasubramanian, T. (2009). Proximate composition of different groups of seaweeds from Vedalai coastal waters (Gulf of Mannar): southeast coast of India, Middle-East. Journal of Science Research, 4(2), 72–77.

    CAS  Google Scholar 

  77. Marinho-Soriano, E., Fonseca, P. C., Carneiro, M. A. A., & Moreira, W. S. C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18), 2402–2406. https://doi.org/10.1016/j.biortech.2005.10.014.

    CAS  Article  Google Scholar 

  78. Masoud, M. S., El-Sarraf, W. M., Harfoush, A. A., & El-Said, G. F. (2004). Studies on fluoride-zirconium-alizarin red S reaction. The Egyptian Science Magazine, 1, 27–32.

    Google Scholar 

  79. Masoud, M. S., El-Sarraf, W. M., Harfoush, A. A., & El-Said, G. F. (2006). The effect of fluoride and other ions on algae and fish of coastal water of Mediterranean sea, Egypt. American Journal of Environmental Sciences, 2, 49–59.

    CAS  Article  Google Scholar 

  80. Matanjun, P., Mohamed, S., Mustapha, N. M., Muhammad, K., & Ming, C. H. (2008). Antioxidant activities and phenolics content of eight species of seaweeds from north Borneo. Journal of Applied Phycology, 20(4), 367–373. https://doi.org/10.1007/s10811-007-9264-6.

    CAS  Article  Google Scholar 

  81. Matanjun, P., Mohamed, S., Mustapha, N. M., & Muhammad, K. (2009). Nutrient content of tropical edible seaweeds, Eucheuma cottonii, Caulerpa lentillifera and Sargassum polycystum. Journal of Applied Phycology, 21(1), 9326–9329.

    Article  CAS  Google Scholar 

  82. McDermid, K. J., & Stuercke, B. (2003). Nutritional composition of edible Hawaiian seaweeds. Journal of Applied Phycology, 15(6), 513–524. https://doi.org/10.1023/B:JAPH.0000004345.31686.7f.

    CAS  Article  Google Scholar 

  83. Medaković, D., Popović, S., Zavodnik, N., Gržeta, B., & Plazonid, M. (1995). X-ray diffraction study of mineral components in calcareous algae (Corallinaceae, Rhodophyta). Marine Biology, 122(3), 479–485. https://doi.org/10.1007/BF00350882.

    Article  Google Scholar 

  84. Mohd Rosni, S., Fisal, A., Azwan, A., Chye, F. Y., & Matanjun, P. (2015). Crude proteins, total soluble proteins, total phenolic contents and SDS-PAGE profile of fifteen varieties of seaweed from Semporna, Sabah, Malasya. International Food Research Journal, 22, 1483–1493.

    CAS  Google Scholar 

  85. Mohy El-Din, S. M., & El-Ahwany, A. M. D. (2016). Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). Journal of Taibah University for Science, 10(4), 471–484. https://doi.org/10.1016/j.jtusci.2015.06.004.

    Article  Google Scholar 

  86. Monahan, T. J. (1976). Lead inhibition of chlorophycean microalgae. Phycology, 12, 358–362.

    CAS  Google Scholar 

  87. Moore, D. J. (1971). The uptake and concentration of fluoride by the blue crab, Callinectes spades. Chesapeake Science, 12(1), 1–13. https://doi.org/10.2307/1350496.

    Article  Google Scholar 

  88. Mukhopadhyay, M. S., Das, A., Subba, P., Bantawa, P., Sarkar, B., Ghosh, P., & Mondal, T. K. (2013). Structural, physiological, and biochemical profiling of tea plants under zinc stress. Biolologia Plantarum, 57(3), 474–480. https://doi.org/10.1007/s10535-012-0300-2.

    CAS  Article  Google Scholar 

  89. Murugaiyan, K., & Narasimman, S. (2012). Elemental composition of Sargassum longifolium and Turbinaria conoides from Pamban Coast, Tamilnadu. International Journal of Research in Biological Sciences, 2(4), 137–140.

    Google Scholar 

  90. Muthuraman, B., & Ranganathan, R. (2004). Biochemical studies of some green algae of Kanyakumari coast. Seaweed Research and Utilization, 26(1&2), 69–71.

    Google Scholar 

  91. NAS. (1972). Drinking water and health. Washington, D.C.: National Research Council, National Academy of Sciences.

    Google Scholar 

  92. Nishino, Y., Oaki, Y., & Hiroaki Imai, H. (2009). Magnesium-mediated nanocrystalline mosaics of calcite. Crystal Growth and Design, 9(1), 223–226. https://doi.org/10.1021/cg800331a.

    CAS  Article  Google Scholar 

  93. Ortiz, J., Romero, N., Rober, T. P., Araya, J., Lopez-Hernández, J., Bozzo, C., et al. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98–104. https://doi.org/10.1016/j.foodchem.2005.07.027.

    CAS  Article  Google Scholar 

  94. Oyaizu, M. (1986). Studies on product of browning reaction prepared from glucose mine. Japanese Journal of Nutrition, 44, 307–315.

    CAS  Article  Google Scholar 

  95. Pádua, M. D., Fontoura, P. S. G., & Mathias, A. B. (2004). Chemical composition of Ulvaria oxysperma (Kützing) Bliding, Ulva lactuca (Linnaeus) and Ulva fascita (Delile). Barazilian Archives of Biology and Technology, 47(1), 49–55. https://doi.org/10.1590/S1516-89132004000100007.

    Article  Google Scholar 

  96. Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17(1), 95–102. https://doi.org/10.1590/S1677-04202005000100008.

    CAS  Article  Google Scholar 

  97. Panda, S. K., & Patra, H. K. (2000). Does Cr (III) produces oxidative damage in excised wheat leaves. Journal of Plant Biology, 27(2), 105–110.

    Google Scholar 

  98. Pangestuti, R., & Kim, S.-K. (2011). Biological activities and health benefit effects of natural pigments derived from marine algae. Journal of Functional Foods, 3(4), 255–266. https://doi.org/10.1016/j.jff.2011.07.001.

    CAS  Article  Google Scholar 

  99. Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516. https://doi.org/10.1021/ja00364a005.

    CAS  Article  Google Scholar 

  100. Percival, E. (1979). The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. British Phycological Journal, 14(2), 103–117. https://doi.org/10.1080/00071617900650121.

    Article  Google Scholar 

  101. Pitre, D., Boullemant, A., & Fortin, C. (2014). Uptake and sorption of aluminum and fluoride by four green algal species. Chemistry Central Journal, 8, 1–7.

    Article  CAS  Google Scholar 

  102. Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 69, 337–341.

    Article  Google Scholar 

  103. Ridley, S. M. (1977). Interaction of chloroplasts with inhibitors. Induction of chlorosis by diuron during prolonged illumination in vitro. Journal of Plant Physiology, 59(4), 724–732. https://doi.org/10.1104/pp.59.4.724.

    CAS  Article  Google Scholar 

  104. Rossum, J. R., & Villarruz, P. A. (1961). Suggested methods for turbidimetric determination of sulfate in seawater. Journal American Water Works Association, 53, 873.

    CAS  Google Scholar 

  105. Ruberto, G., Baratta, M. T., Biondi, D. M., & Amico, V. (2001). Antioxidant activity ofextracts of the marine algal genus Cystoseira in a micellar model system. Journal of Applied Phycology, 13(5), 403–407. https://doi.org/10.1023/A:1011972230477.

    Article  Google Scholar 

  106. Rupérez, P. (2002). Mineral content of edible marine seaweeds. Food Chemistry, 79(1), 23–26. https://doi.org/10.1016/S0308-8146(02)00171-1.

    Article  Google Scholar 

  107. Rupérez, P., & Saura-Calixto, F. (2001). Dietary fibre and physico-chemical properties of edible Spanish seaweeds. European Journal of Food Research and Technology, 212, 349–354.

    Article  Google Scholar 

  108. Sánchez-Rodríguez, I., Huerta-Díaz, M. A., Choumiline, E., Holguín-Quiňones, O., & Zertuche-Gonzále, J. A. (2001). Elemental concentration in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue. Environmental Pollution, 114(2), 145–160. https://doi.org/10.1016/S0269-7491(00)00223-2.

    Article  Google Scholar 

  109. Sathya, K. S., & Balakrishnan, K. P. (1988). Physiology of phytoplankton in relation to metal concentration: Effect of cadmium on Scenedesmus bijugatus and Nitzschiapalea. Water Air Soil Pollution, 38(3–4), 283–297.

    CAS  Google Scholar 

  110. Schuhmacher, M., & Domingo, J. (1996). Concentration of selected elements in oyster Crassostrea angulata from the Spanish Coast. Bulletin of Environmental Contamination and Toxicology, 56(1), 106–113. https://doi.org/10.1007/s001289900016.

    CAS  Article  Google Scholar 

  111. Schull, W. J., Razmilic, B., Figueroa, L., & Gonzalez, M. (1990). Trace metals. In W. J. Schull & F. Rothhammer (Eds.), The Aymara. Studies in human biology (Vol. 2). Dordrecht: Springer. https://doi.org/10.1007/978-94-009-2141-2.

    Google Scholar 

  112. Seenivasan, R., Rekha, M., Indu, H., & Geetha, S. (2012). Antibacterial activity and phytochemical analysis of selected seaweeds from Mandapam coast, India. Journal of Applied Pharmaceutical Science, 2(10), 159–169.

    Google Scholar 

  113. Senthil, K. S., & Kamaraj, M. (2011). Antimicrobial activity of Cucumis anguria L. by agar well diffusion method. Botany Research International, 4, 41–42.

    Google Scholar 

  114. Shams El-Din, N. G., Mohamedein, L. I., & El-Moselhy Kh, M. (2014). Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008–2010. Environmental Monitoring and Assessment, 186(9), 5865–5881. https://doi.org/10.1007/s10661-014-3825-3.

    CAS  Article  Google Scholar 

  115. Sivakumar, S. R., & Arunkumar, K. (2009). Sodium, potassium and sulphate composition in some seaweeds occurring along the coast of Gulf of Mannar, India. Asian Journal of Plant Sciences, 8, 500–504.

    CAS  Article  Google Scholar 

  116. Sorenson, J. R. J., Campbell, I. R., Tepper, L. B., & Lingg, R. D. (1974). Aluminum in the environment and human health. Environmental Health Perspective, 8, 3–95.

    CAS  Article  Google Scholar 

  117. Stewart, W. D. P. (1974). Botanical monographs, algal physiology and biochemistry (Vol. 10, p. 989). Oxford: Black Well Scientific Publications Ltd Osney Mead.

    Google Scholar 

  118. Stirk, W. A., Reinecke, D. L., & Staden, J. V. (2007). Seasonal variation in antifungal, antibacterial and acetyl cholinesterase activity in seven South African seaweeds. Journal of Applied Phycology, 19(3), 271–276. https://doi.org/10.1007/s10811-006-9134-7.

    CAS  Article  Google Scholar 

  119. Sudharsan, S., Seedevi, P., Ramasamy, P., Subhapradha, N., Vairamani, S., & Shanmugam, A. (2012). Heavy metal accumulation in seaweeds and sea grasses along southeast coast of India. Journal of Chemical and Pharmaceutical Research, 4, 4240–4244.

    CAS  Google Scholar 

  120. Taboada, C., Millan, R., & Miguez, M. I. (2013). Nutritional value of the marine algae wakame (Undaria pinnitifida) and nori (Porphyra purpurea) as food supplements. Journal of Applied Phycology, 25(5), 1271–1276. https://doi.org/10.1007/s10811-012-9951-9.

    CAS  Article  Google Scholar 

  121. Topcuoǧlu, S., Güven, K. C., Kirbasoglu, C., Güngör, N., Ünlü, S., & Yilmaz, Y. Z. (2001). Heavy metals in marine algae from Sile in the Black Sea, 1994-1997. Bulletin of Environmental Contamination and Toxicology, 67(2), 288–294. https://doi.org/10.1007/s00128-001-0123-x.

    Article  Google Scholar 

  122. Topcuoǧlu, S., Güven, K. C., Balkıs, N., & Kirbașoǧlu, C. (2003). Heavy metal monitoring of marine algae from the Turkish Coast of the Black Sea, 1998-2000. Chemosphere, 52(10), 1683–1688. https://doi.org/10.1016/S0045-6535(03)00301-1.

    Article  CAS  Google Scholar 

  123. Turan, F., Ozgun, S., Sayın, S., & Ozyılmaz, G. (2015). Biochemical composition of some red and green seaweeds from Iskenderun Bay, the northeastern Mediterranean coast of Turkey. Journal of Black Sea/Mediterranean Environment, 21(3), 239–249.

    Google Scholar 

  124. Vinayak, R., Sudha, S., & Chatterji, A. (2011). Bioscreening of a few green seaweeds from India for their cytotoxic and antioxidant potential. Journal of the Science of Food and Agriculture, 91(13), 2471–2476. https://doi.org/10.1002/jsfa.4490.

    CAS  Article  Google Scholar 

  125. Wang, T., Jónsdóttir, R., & Ólafsdóttir, G. (2009). Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chemistry, 116(1), 240–248. https://doi.org/10.1016/j.foodchem.2009.02.041.

    CAS  Article  Google Scholar 

  126. Williams, R. J. P. (1970). The biochemistry of sodium, potassium, magnesium, and calcium. Quarterly Reviews, 24(3), 331. https://doi.org/10.1039/qr9702400331.

    CAS  Article  Google Scholar 

  127. Wu, S. C., Wang, F. J., & Pan, C. L. (2010). The comparison of anti-oxidative properties of seaweed oligosaccharides fermented by two lactic acid bacteria. Journal of Marine Science Technology, 18, 537–545.

    Google Scholar 

  128. Zbikowski, R., Szefer, P., & Latała, A. (2006). Distribution and relationships between selected chemical elements in green alga Enteromorpha sp. from the southern Baltic. Environmental Pollution, 143(3), 435–448. https://doi.org/10.1016/j.envpol.2005.12.007.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Aida Shobier (National Institute of Oceanography and Fisheries, Egypt) for her helpful suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mona M. Ismail.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ismail, M.M., El Zokm, G.M. & El-Sayed, A.A.M. Variation in biochemical constituents and master elements in common seaweeds from Alexandria Coast, Egypt, with special reference to their antioxidant activity and potential food uses: prospective equations. Environ Monit Assess 189, 648 (2017). https://doi.org/10.1007/s10661-017-6366-8

Download citation

Keywords

  • Seaweeds
  • Biochemical
  • Antioxidant
  • Master elements
  • Ion quotient
  • Estimated daily intake