Seasonal dynamics of freshwater pathogens as measured by microarray at Lake Sapanca, a drinking water source in the north-eastern part of Turkey

Abstract

Monitoring drinking water quality is an important public health issue. Two objectives from the 4 years, six nations, EU Project μAqua were to develop hierarchically specific probes to detect and quantify pathogens in drinking water using a PCR-free microarray platform and to design a standardised water sampling program from different sources in Europe to obtain sufficient material for downstream analysis. Our phylochip contains barcodes (probes) that specifically identify freshwater pathogens that are human health risks in a taxonomic hierarchical fashion such that if species is present, the entire taxonomic hierarchy (genus, family, order, phylum, kingdom) leading to it must also be present, which avoids false positives. Molecular tools are more rapid, accurate and reliable than traditional methods, which means faster mitigation strategies with less harm to humans and the community. We present microarray results for the presence of freshwater pathogens from a Turkish lake used drinking water and inferred cyanobacterial cell equivalents from samples concentrated from 40 into 1 L in 45 min using hollow fibre filters. In two companion studies from the same samples, cyanobacterial toxins were analysed using chemical methods and those dates with highest toxin values also had highest cell equivalents as inferred from this microarray study.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Akçaalan, R., Köker, L., GürevIn, C., & Albay, M. (2014). Planktothrix rubescens, a perennial presence and toxicity in Lake Sapanca. Turkish Journal of Botany, 38, 782–789.

    Article  Google Scholar 

  2. Allgaier, M., & Grossart, H. P. (2006). Diversity and seasonal dynamics of Actinobacteria populations in four lakes in northeastern Germany. Applied and Environmental Microbiology, 72, 3489–3497.

    CAS  Article  Google Scholar 

  3. Altüg, G., Yardimci, C. H., Okgerman, H., & Tarkan, S. A. (2006). Levels of bacterial metabolic activity, indicator (Coliform, Escherichia coli) and pathogen bacteria (Salmonella spp.) in the surface water of Sapanca Lake, Turkey. Journal of the Black Sea/Mediterranean Environment, 12, 67–77.

    Google Scholar 

  4. Aw, T. G., & Rose, J. B. (2012). Detection of pathogens in water, from phylochips to qPCR to pyrosequencing. Current Opinion in Biotechnology, 23, 422–430.

    CAS  Article  Google Scholar 

  5. Baker-Austin, C., Trinanes, J., Gonzalez-Escalona, N., & Martinez-Urtaza, J. (2017). Non-cholera Vibrios, the microbial barometer of climate change. Trends in Microbiology, 25, 76–84.

    CAS  Article  Google Scholar 

  6. Baudart, J., Guillebault, D., Meilke, E., Meyer, T., Tandon, N., Fischer, S., Weigel, W., & Medlin, L. K. (2016). Microarray (phylochip) analysis of freshwater pathogens at several sites along the Northern German coast transecting both estuarine and freshwaters. Applied Microbiology and Biotechnology, 101, 871–886.

    Article  Google Scholar 

  7. Bradford, S. A., & Schijven, J. (2002). Release of Cryptosporidium and Giardia from dairy calf manure, impact of solution salinity. Environmental Science and Technology, 36, 3916–3923.

    CAS  Article  Google Scholar 

  8. Caraux, G., & Pinloche, S. (2005). PermutMatrix, a graphical environment to arrange gene expression profiles in optimal linear order. Bioinformatics, 21, 1280–1281.

    CAS  Article  Google Scholar 

  9. Certad, G., Dupouy-Camet, J., Gantois, N., Hammouma-Ghelboun, O., Pottier, M., Guyot, K., Benamrouz, S., Osman, M., Delaire, B., Creusy, C., Viscogliosi, E., Dei-Cas, E., Aliouat-Denis, C. M. & Follet, J. (2015). Identification of Cryptosporidium species in fish from Lake Geneva (Lac Léman) in France. PLoS One, 10. https://doi.org/10.1371/journal.pone.0133047.

  10. Cai, T., Jiang, L., Yang, C., & Huang, K. (2006). Application of real-time PCR for quantitative detection of Vibrio parahaemolyticus from seafood in eastern China. FEMS Immunology & Medical Microbiology, 46, 180–186.

    CAS  Article  Google Scholar 

  11. Chomczynski, P., & Sacchi, N. (1987). The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction twenty-something years on. Nature Protocols, 1, 581–585.

    Article  Google Scholar 

  12. Clifford, R. J., Milillo, M., Prestwood, J., Quintero, R., Zurawski, D. V., Kwak, Y. I., Waterman, P. E., Lesho, E. P., & Mc Gann, P. (2012). Detection of bacterial 16S rRNA and identification of four clinically important bacteria by real-time PCR. PLoS One, 7, e48558.

    CAS  Article  Google Scholar 

  13. Davis, P. A., Dent, M., Parker, J., Reynolds, C. S., & Walsby, A. E. (2003). The annual cycle of growth rate and biomass change in Planktothrix spp. in Blelham Tarn., English Lake District. Freshwater Biology, 48, 852–867.

    Article  Google Scholar 

  14. Da-Silva, E., Barthelmebs, L., & Baudart, J. (2016). Development of a PCR-free DNA-based assay for the specific detection of Vibrio species in environmental samples by targeting the 16S rRNA. Environmental Science and Pollution Research, 24, 5690–5700.

    Article  Google Scholar 

  15. Dittami, S. M., & Edvardsen, B. (2013). GPR-analyzer, a simple tool for quantitative analysis of hierarchical multispecies microarrays. Environmental Science and Pollution Research, 20, 6808–6815.

    Article  Google Scholar 

  16. EPA. (2014). Cyanobacteria and cyanotoxins, information for drinking water systems. EPA 810F11001. Available online at https://www.epa.gov/sites/production/files/2014-08/documents/cyanobacteria_factsheet.pdf.

  17. Frahm, E., & Obst, U. (2003). Application of the fluorogenic probe technique (TaqMan PCR) to the detection of Enterococcus spp. and Escherichia coli in water samples. Journal of Microbiological Methods, 52, 123–131.

    CAS  Article  Google Scholar 

  18. Gescher, G., Metfies, K., & MedlIn, L. K. (2008). The ALEX Chip—development of a DNA chip for identification. Harmful Algae, 7, 485–494.

    CAS  Article  Google Scholar 

  19. Greer, B., McNamee, S. E., Boots, B., Cimarelli, L., Guillebault, D., Helmi, K., Marcheggiani, S., Panaiotov, S., Breitenbach, U., Akcaalan, R., Medlin, L. K., Kittler, K., Elliot, C. T., & Campbell, K. (2016). A validated UPLC–MS/MS method for the surveillance of ten aquatic biotoxins in European brackish and freshwater systems. Harmful Algae, 55, 31–40.

    CAS  Article  Google Scholar 

  20. Griffitt, K. J., Noriea, N. F., Johnson, C. N., & Grimes, D. J. (2011). Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization. Journal of Microbiological Methods, 85, 114–118.

    CAS  Article  Google Scholar 

  21. Hill, V. R., Polaczyk, A. L., Hahn, D., Narayanan, J., Cromeans, T. L., Roberts, J. M., & Amburgey, J. E. (2005). Development of a rapid method for simultaneous recovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphate and surfactants. Applied and Environmental Microbiology, 71, 6878–6884.

    CAS  Article  Google Scholar 

  22. Karlson, B., Cusack, C., & Bresnan, E. (Eds). (2010). Microscopic and molecular methods for quantitative phytoplankton analysis. IOC Manuals and Guides, no. 55 (110 pages). Paris: Intergovernmental Oceanographic Commission of ©UNESCO.

  23. Kegel, J. U., Del Amo, Y., & Medlin, L. K. (2013). Introduction to project MIDTAL, its methods and samples from Arcachon Bay., France. Environmental Science and Pollution Research, 20, 6690–6704.

    Article  Google Scholar 

  24. Kegel, J. U., Del Amo, Y., Costes L. & Medlin L. K. (2016). Monitoring toxic microalgae in Arcachon Bay in France by microarrays. Microarrays, Featured Papers 2, 1–23.

  25. Lawton, L. A., Edwards, C., & Codd, G. A. (1994). Extraction and high-performance liquid chromatographic method for the determination of microcystins in raw and treated waters. Analyst, 119, 1525–1530.

    CAS  Article  Google Scholar 

  26. Lewis, J., Medlin, L. K., & Raine, R. (2012). MIDTAL (microarrays for the detection of toxic algae). A protocol for a successful microarray hybridisation and analysis. Germany: Koeltz., Koenigstein.

  27. Kurmayer, R., Blom, J. F., Deng, L., & Pernthaler, J. (2015). Integrating phylogeny., geographic niche partitioning and secondary metabolite synthesis in bloom-forming Planktothrix. The International Sosciety of Micorbial Ecology Journal, 9, 909–921.

    CAS  Google Scholar 

  28. Lindahl, J. F. & Grace, D. (2015). The consequences of human actions on risks for infectious diseases, a review. Infection, Ecology, and Epidemiology, 5. https://doi.org/10.3402/iee.v5.30048.

  29. Marcheggiani, S., D’Ugo, E., Puccinelli, C., Giuseppetti, R., D’Angelo, A. M., Gualerzi, C. O., Spurio, R., MedlIn, L. K., Guillebault, D., Baudart-Lenfant, J., Weigel, W., Helmi, K., & Mancini, L. (2015). Detection of emerging and re-emerging pathogens in surface waters close to an urban area. International Journal of Environmental Research and Public Health, 12, 5505–5527.

    Article  Google Scholar 

  30. Medlin, L. K. (2016). Mini review: molecular techniques for identification and characterization of marine biodiversity. Annals of Marine Biology and Research, 3(2), 1015.

  31. Medlin, L. K. (2013). Note: steps taken to optimise probe specificity and signal intensity prior to field validation of the MIDTAL microarray for the detection of toxic algae. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-012-1195-3.

  32. Medlin L. K., Guillebault, D., Mengs, G., Garbi, C., Dejana, L., Fajardo, C. & Martin, M. (2017). New molecular tools, application of the mAQUA phylochip and concomitant FISH probes to study freshwater pathogens from samples taken along the Tiber River., Italy. Proceedings of 17 th Water Quality Conference, 221: in press.

  33. McLoughlin, K. S. (2011). Microarrays for pathogen detection and analysis. Brief Functional Genomics, 10, 342–353.

    Article  Google Scholar 

  34. Oliver, J. D. (2010). Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiological Review, 34, 415–425.

    CAS  Article  Google Scholar 

  35. Oliveira, T. C. R. M., Barbut, S., & Griffiths, M. W. (2005). Detection of Campylobacter jejuni in naturally contaminated chicken skin by melting peak analysis of amplicons in real-time PCR. International Journal of Food Microbiology, 104, 105–111.

    CAS  Article  Google Scholar 

  36. Oudra, B., Loudiki, M., Vasconcelos, V., Sabour, B., Sbiyyaa, B., Oufdou, K., & Mezrioui, N. (2002). Detection and quantification of microcystins from cyanobacteria strains isolated from reservoirs and ponds in Morocco. Environmental Toxicology, 17, 32–39.

    CAS  Article  Google Scholar 

  37. Paniel, N., Baudart, J., Hayat, A., & Barthelmebs, L. (2013). Aptasensor and genosensor methods for detection of microbes in real world samples. Methods, 64, 229–240.

  38. Rodriguez, I., Fraga, M., Alfonso, A., Guillebault, D., Medlin L., Baudart, J., Jacob, P., Helmi, K., Meyer, T., Breitenbach, U., Holden, N. M., Boots, B., Spurio, R., Cimarelli, L., Mancini, L., Marcheggiani, S., Albay, M., Akcaalan, R., Köker, L., & Botana, L. M. (2016). Monitoring of freshwater toxins in European environmental waters by using novel multi-detection methods. Environmental Toxicology and Chemistry, 36(3), 645–654. https://doi.org/10.1002/etc.3577.

  39. Santhi, N., Pradeepa, C., Subashini, P., & Kalaiselvi, S. (2013). Automatic identification of algal communities from microscopic images. Bioinformatics and Biology Insights, 7, 327–334.

    Article  Google Scholar 

  40. Sidhu, J. P., Hodgers, L., Ahmed, W., Chong, M. N., & Toze, S. (2012). Prevalence of human pathogens and indicators in stormwater runoff in Brisbane, Australia. Water Research, 46, 6652–6660.

    CAS  Article  Google Scholar 

  41. Sivonen, K., & Jones, G. (1999). Cyanobacterial toxins. In I. Chorus & J. Bartram (Eds.), Toxic Cyanobacteria in Water, A Guide to their Public Health Consequences., Monitoring and Management (pp. 41–91). London: E & F Spon.

    Google Scholar 

  42. Suda, S., Watanabe, M. M., Otsuka, S., Chong, M. N., & Toze, S. (2002). Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Intternational Journal of Systematic Evolution and Microbiology, 52, 1577–1595.

    CAS  Google Scholar 

  43. Tokat, B. (2010). Temporal and spatial distribution of picophytoplankton in Sapanca lake. MSc Thesis. Istanbul University, Institute of Graduate Studies in Science and Engineering.

  44. Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mittleilungen Verhandlungen des Internationalen Verein Limnologie, 9, 1–38.

    Google Scholar 

  45. Van Apeldoorn, M. E., van Egmond, H. P., Speijers, G. J. A., & Bakker, G. J. I. (2007). Toxins of cyanobacteria. Molecular Nutritional Food Research, 51, 7–60.

    Article  Google Scholar 

  46. Van der Gucht, K., Van de Kerckhove, T., Vloemans, N., CousIn, S., Muylaert, K., Sabbe, K., Gillis, M., Declerk, S., De Meester, L., & Vyverman, W. (2005). Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiology Ecology, 53, 205–220.

    Article  Google Scholar 

  47. Van Der Waal, D., Guillebault D., Alfonso D., Rodríguez, I., Botana, L. & Medlin L. K. (2017). μAqua microarrays for phylogenetic and toxin expression of cyanobacteria with validation by cell counts and UPLC/MS-MS. Harmful Algae, in press.

  48. WHO (2006). Guideline for drinking water quality, vol. 1, 3rd edn. Geneva: Recommendations Nonserial Publication, ISBN-13, 9789241546744.

  49. Zwart, G., Crump, B. C., Agterveld, M. P., Hagen, F., & Han, S.-K. (2002). Typical freshwater bacteria, an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology, 28, 141–155.

    Article  Google Scholar 

Download references

Funding

This work was supported by the EU μAQUA project (FP7-KBBE-2010-4, 265409).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Linda K. Medlin.

Electronic supplementary material

ESM 1

(DOC 411 kb)

ESM 2

(PDF 367 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akçaalan, R., Albay, M., Koker, L. et al. Seasonal dynamics of freshwater pathogens as measured by microarray at Lake Sapanca, a drinking water source in the north-eastern part of Turkey. Environ Monit Assess 190, 42 (2018). https://doi.org/10.1007/s10661-017-6314-7

Download citation

Keywords

  • Phylochips
  • Microarray
  • Freshwater pathogens
  • Cyanobacteria
  • Molecular barcodes