Skip to main content
Log in

Oil contamination in surface sediment of Anzali Wetland in Iran is primarily even carbon number n-alkanes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To determine the extent of oil contamination and biodegradation in Anzali Wetland of Iran, we examined aliphatic hydrocarbons in surface sediment of this area (n=20). Petroleum hydrocarbon levels (mean 1585 ± 1117; range 316 to 4358 μg g−1 dry weight) were similar in value to reports from other highly contaminated areas, such as New York Bight, Saudi and Kuwaiti coasts of the Persian Gulf, and Dubai shorelines. Even carbon homologs dominated distribution of n-alkanes in surface sediment of Anzali, which is rarely reported elsewhere. Multiple factors used in our study point to petrogenic source for n-alkanes in Anzali Wetland. Anzali receives multiple industrial and agricultural runoffs from the surrounding area. Shipping industry and oil industry are responsible for a major portion of pollutants entering Anzali. Municipal wastewater discharges are another source of Anzali pollution. To determine why even carbon number n-alkanes predominate in Anzali, we examined the following indices: existence of unresolved complex mixtures (UCM), ratio of UCM to resolved alkanes (RA), ratio of low-molecular weight to high-molecular weight molecules, presence of degraded oil residue, high-relative biodegradation, and the degree of hydrocarbon weathering in the surface sediment of the area. Our findings corroborate with such predominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aghadadashi, V., Mehdinia, A., & Molaei, S. (2016). Origin, toxicological and narcotic potential of sedimentary PAHs and remarkable even/odd n-alkane predominance in Bushehr Peninsula, the Persian Gulf. Marine Pollution Bulletin, 114(1), 494–504.

    Article  Google Scholar 

  • Akbarzadeh, A., Laghai, H. A., Monavari, M., Nezami, S. A., & Shokrzadeh, M. S. S. (2008). Toxicological and environmental chemistry survey and determination of Anzali wetland trophic state through geographic information systems (GIS). Toxicological & Environmental Chemistry, 90(6), 1055–1062.

    Article  CAS  Google Scholar 

  • Al-Darwish, H. A., Abd El-Gawad, E. A., Mohammed, F. H., & Lotfy, M. M. (2005). Assessment of contaminants in Dubai coastal region, UAE. Environmental Geology, 49(2), 240–250.

    Article  CAS  Google Scholar 

  • Aloulou, F., Kallel, M., Dammak, M., Elleuch, B., & Saliot, A. (2010). Even-numbered n-alkanes/n-alkenes predominance in surface sediment of Gabes Gulf in Tunisia. Environmental Earth Sciences, 61(1), 1–10.

    Article  CAS  Google Scholar 

  • Ayati, B. (2003). Investigation of sanitary and industrial wastewater effects on Anzali reserved wetland. MAB – UNESCO.

  • Beg, M. U., Saeed, T., Al-Muzaini, S., Beg, K. R., & Al-Bahloul, M. (2003). Distribution of petroleum hydrocarbon in sediment from coastal area receiving industrial effluents in Kuwait. Ecotoxicology and Environmental Safety, 54(1), 47–55.

    Article  CAS  Google Scholar 

  • Blumer, M., Mullin, M. M., & Thomas, D. W. (1963). Pristane in zooplankton. Science, 140(3570), 974.

    Article  CAS  Google Scholar 

  • Blumer, M., & Sass, J. (1972). Indigenous and petroleum-derived hydrocarbons in a polluted sediment. Marine Pollution Bulletin, 3, 92–94.

    Article  Google Scholar 

  • Booth, A. M., Scarlett, A. G., Lewis, C. A., Belt, S. T., & Rowland, S. J. (2008). Unresolved complex mixtures (UCMs) of aromatic hydrocarbons: branched alkyl indanes and branched alkyl tetralins are present in UCMs and accumulated by and toxic to, the mussel Mytilus edulis. Environmental Science & Technology, 42(21), 8122–8126.

    Article  CAS  Google Scholar 

  • Booth, A. M., Sutton, P. A., Lewis, A., Lewis, A. C., Scarlett, A., Chau, W., et al. (2007). Unresolved complex mixtures of aromatic hydrocarbons: thousands of overlooked persistent, bioaccumulative, and toxic contaminants in mussels. Environmental Science & Technology, 41(2), 457–464.

    Article  CAS  Google Scholar 

  • Broman, D., Colmsjo, A., Ganning, B., Naf, C., Zebuhr, Y., & Ostman, C. (1987). Fingerprinting petroleum hydrocarbons in bottom sediment, plankton, and sediment trap collected seston. Marine Pollution Bulletin, 18(7), 380–388.

    Article  CAS  Google Scholar 

  • Chaler, R., Dorronsoro, C., Grimalt, J. O., Agirrezabala, L. M., Fernandez-Mendiola, P. A., Garcıa-Mondejar, J., Gomez-Perez, I., & Lopez-Horgue, M. (2005). Distributions of C22–C30 even-carbon-number n-alkanes in ocean anoxic event 1 samples from the Basque-Cantabrian Basin. Naturwissenschaften, 92(5), 221–225.

    Article  CAS  Google Scholar 

  • Colombo, J. C., Pelletier, E., Brochu, C., Khalil, M., & Catoggio, J. A. (1989). Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de la Plata estuary, Argentina. Environmental Science & Technology, 23(7), 888–894.

    Article  CAS  Google Scholar 

  • Commendatore, M. G., Esteves, J. L., & Colombo, J. C. (2000). Hydrocarbons in coastal sediment of Patagonia, Argentina: levels and probable sources. Marine Polluttion Bulletin, 40(11), 989–998.

    Article  CAS  Google Scholar 

  • Commendatore, M. G., Nievas, M. L., Amin, O., & Esteves, J. L. (2012). Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediment from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). Marine Environmental Research, 74, 20–31.

    Article  CAS  Google Scholar 

  • Dean, W. E. (1974). Determination of carbonate and organic matter in calcareous sediment and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology, 44(1), 242–248.

    CAS  Google Scholar 

  • Debyser, Y., Pelet, R., & Dastillung, M. (1977). Géochimie organique de sédiments marins recents: Mér Noire. Baltique, Atlantique (Mauritanie). In R. Campos & J. Goni (Eds.), Advances in organic geochemistry 1975 (pp. 289–320). Madrid: Enadimsa.

    Google Scholar 

  • Dembicki, H., Meinschein, W. G., & Hattin, D. E. (1976). Possible ecological and environmental significance of the predominance of even-carbon numbered C2o-C3o n-alkanes. Geochimica et Cosmochimica Acta, 40(2), 203–208.

    Article  CAS  Google Scholar 

  • De Souza, D. B., Machado, K. S., Froehner, S., Scapulatemp, C. F., & Bleninger, T. (2011). Distribution of n-alkanes in lacustrine sediment from subtropical lake in Brazil. Chemie der Erde-Geochemistry, 71(2), 171–176.

    Article  Google Scholar 

  • Donkin, P., Smith, E. L., & Rowland, S. J. (2003). Toxic effects of unresolved complex mixtures of aromatic hydrocarbons accumulated by mussels, Mytilus edulis, from contaminated field sites. Environmental Science Technology, 37(21), 4825–4830.

    Article  CAS  Google Scholar 

  • Ekpo, B. O., Oyo-Ita, O. E., & Wehner, H. (2005). Even-n-alkane/alkene predominances in surface sediment from the Calabar River, SE Niger Delta, Nigeria. Naturwissenschaften, 92(7), 341–346.

    Article  CAS  Google Scholar 

  • Elias, V. O., Simoneit, B. R. T., & Cardoso, J. N. (1997). Even n-alkanes predominances on the Amazon Shelf and a Northeast Pacific hydrothermal system. Naturwissenschaften, 84(9), 415–420.

    Article  CAS  Google Scholar 

  • Farrington, J. W., & Tripp, B. W. (1977). Hydrocarbons in western North Atlantic surface sediment. Geochimica et Cosmochimica Acta, 41(11), 1627–1641.

    Article  CAS  Google Scholar 

  • Gearing, P., Gearing, J., Lytle, T. F., & Lytle, J. (1976). Hydrocarbons in 60 northeast Gulf of Mexico shelf sediment. Geochimica et Cosmochimica Acta, 40(9), 1005–1017.

    Article  CAS  Google Scholar 

  • Gough, M. A., & Rowland, S. J. (1990). Characterization of unresolved complex mixtures of hydrocarbons in petroleum. Nature, 344, 648–650.

    Article  CAS  Google Scholar 

  • Grimalt, J., Albaiges, J., Al-Saad, H., & Douabul, A. (1985). n-Alkane distributions in surface sediments from the Arabian Gulf. Naturwissenschaften, 72(1), 35–37.

    Article  CAS  Google Scholar 

  • Grimalt, J., & Albaigés, J. (1987). Sources and occurrence of C12–C22 n-alkane distributions with even carbon-number preference in sedimentary environments. Geochimica et Cosmochimica Acta, 51(6), 1379–1384.

    Article  CAS  Google Scholar 

  • Guoying, S., Shanfa, F., Dehan, L., Nengxian, S., & Hongming, Z. (1980). The geochemistry of n-alkanes with an even-odd predominance in the Tertiary Shahejie Formation of northern China. Physics and Chemistry of the Earth, 12, 115–121.

    Article  CAS  Google Scholar 

  • Hajizade-Zaker, N., Rahmani, I., Moghaddam, M., Ramin, S. H., & Abesi, A. (2012). Concentration and origin of petroleum hydrocarbons in sediment of Anzali Port. Journal of Environmental Studies, 37(60), 99–106.

    Google Scholar 

  • Harji, R. R., Yvenat, A., & Bhosle, N. B. (2008). Sources of hydrocarbons in sediment of the Mandovi Estuary and the Marmugoa harbour, west coast of India. Environment International, 34(7), 959–965.

    Article  Google Scholar 

  • Hassanzadeh, N., Esmaili Sari, A., Khodabandeh, S., & Bahramifar, N. (2014). Occurrence and distribution of two phthalate esters in the sediment of the Anzali wetlands on the coast of the Caspian Sea (Iran). Marine Pollution Bulletin, 89(1–2), 128–135.

    Article  CAS  Google Scholar 

  • Ibbotson, J., & Ibhadon, A. O. (2010). Origin and analysis of aliphatic and cyclic hydrocarbons in northeast United Kingdom coastal marine sediment. Marine Pollution Bulletin, 60(7), 1136–1141.

    Article  CAS  Google Scholar 

  • Jacquot, F., Ledreau, Y., Dgumenq, P., Munoz, D., Guiliano, M., Imbert, G., et al. (1999). The origins of hydrocarbons trapped in the Lake of Berre sediment. Chemosphere, 39(9), 1407–1419.

    Article  CAS  Google Scholar 

  • Jamshidi-Zanjani, A., & Saeedi, M. (2013). Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environmental Earth Sciences, 70(4), 1791–1808.

    Article  CAS  Google Scholar 

  • Japan International Cooperation Agency (JICA). (2005). The study on integrated management for ecosystem conservation of the Anzali wetland in the Islamic Republic of Iran. Final report submitted to department of environment.

  • Jovančićević, B., Polić, P., Vitorović, D., Scheeder, G., Teschner, M., & Wehner, H. (2001). Biodegradation of oil-type pollutants in Danube alluvial sediment (Yugoslavia). Fresenius Environmental Bulletin, 10(2), 178–182.

    Google Scholar 

  • Khosravi, M., Bahramifar, N., & Ghasempouri, M. (2011). Survey of heavy metals (Cd, Pb, Hg, Zn and Cu) contamination in sediment of three sites Anzali wetland. Iranian Journal of Health and Environment, 4(2), 223–232.

    Google Scholar 

  • Killops, S. D., & Al-Juboori, M. (1990). Characterisation of the unresolved complex mixture (UCM) in the gas chromatograms of biodegraded petroleums. Organic Geochemistry, 15(2), 147–160.

    Article  CAS  Google Scholar 

  • Medeiros, P. M., Bícego, M. C., Castelao, R. M., Del Rosso, C., Fillmann, G., & Zambon, A. J. (2005). Natural and anthropogenic hydrocarbon inputs to sediment of Patos Lagoon Estuary, Brazil. Environment International, 31(1), 77–87.

    Article  CAS  Google Scholar 

  • Mille, G., Guiliano, M., Asia, L., Malleret, L., & Jalaluddin, N. (2006). Sources of hydrocarbons in sediment of the Bay of Fort de France (Martinique). Chemosphere, 64(7), 1062–1073.

    Article  CAS  Google Scholar 

  • Mirzajani, A. R., Khodaparast sharifi, H., Babaei, H., Abedini, A., & Dadai Ghandi, A. (2010). Eutrophication trend of Anzali Wetland based on 1992–2002 data. Journal of Environmental Studies, 35(52), 19–21.

    Google Scholar 

  • Mortazavi, S., Riyahi Bakhtiari, A., Esmaili Sari, A., Bahramifar, N., & Rahbarizade, F. (2012). Phenolic endocrine disrupting chemicals (EDCs) in Anzali wetland, Iran: elevated concentrations of 4-nonylphenol, octylphenol and bisphenol A. Marine Pollution Bulletin, 64(5), 1067–1073.

    Article  CAS  Google Scholar 

  • Nemirovskaya, I. A., & Brekhovskikh, V. F. (2008). Origin of hydrocarbons in the particulate matter and bottom sediment of the northern shelf of the Caspian Sea. Oceanology, 48(1), 43–53.

    Article  Google Scholar 

  • Nishimura, M., & Baker, E. W. (1986). Possible origin of n-alkanes with a remarkable even-to-odd predominance in recent marine sediment. Geochimica et Cosmochimica Acta, 50(2), 299–305.

    Article  CAS  Google Scholar 

  • Omar, N. Y. M., Abas, M. R. B., Rahman, N. A., & Simoneit, B. R. T. (2006). Heavy molecular weight organic in the atmosphere: origins and mass spectra (1st ed.). Malaysia: University of Malaya Press.

    Google Scholar 

  • Philippi, G. T. (1974). The influence of marine and terrestrial source material on the composition of petroleum. Geochimica et Cosmochimica Acta, 38(6), 947–966.

    Article  CAS  Google Scholar 

  • Qiu, Y. J., Bigot, M., & Saliot, A. (1991). Non-aromatic hydrocarbons in suspended matter from Changjiang (Yangtse River) Estuary: their characterization and variation in winter and summer (low- and high-flow) conditions. Estuarine Coastal Shelf Science, 33(2), 153–174.

    Article  CAS  Google Scholar 

  • Readman, J. W., Bartocci, J., Tolosa, I., Fowler, S. W., Oregioni, B., & Abdulraheem, M. Y. (1996). Recovery of the coastal marine environment in the Gulf following the 1991 war related oil spills. Marine Pollution Bulletin, 32(6), 493–498.

    Article  CAS  Google Scholar 

  • Readman, J. W., Fillmann, G., Tolosa, I., Bartocci, J., Villeneuve, J. P., Catinni, C., et al. (2002). Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin, 44(1), 48–62.

    Article  CAS  Google Scholar 

  • Readman, J. W., Mantoura, R. F. C., & Rhead, M. M. (1987). A record of polycyclic aromatic hydrocarbons (PAH) pollution obtained from accreting sediment of the Tamar Estuary, UK: evidence for nonequilibrium behavior of PAH. Science of the Total Environment, 66, 73–94.

    Article  CAS  Google Scholar 

  • Riyahi Bakhtiari, A., Zakaria, M. P., Yaziz, M. I., Lajis, M. N. H., Bi, X., & Rahim, M. C. A. (2009). Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: Perylene as indicator of land plant–derived hydrocarbons. Applied Geochemistry, 24(9), 1777–1787.

    Article  Google Scholar 

  • Riyahi Bakhtiari, A., Zakaria, M. P., Yaziz, M. I., Lajis, M. N. H., & Bi, X. (2011). Variations and origins of aliphatic hydrocarbons in sediment cores from Chini Lake in Peninsular Malaysia. Environmental Forensics, 12(1), 79–91.

    Article  Google Scholar 

  • Rowland, S., Donkin, P., Smith, E., & Wraige, E. (2001). Aromatic hydrocarbon “humps” in the marine environment: unrecognized toxins? Environmental Science & Technology, 35(13), 2640–2644.

    Article  CAS  Google Scholar 

  • Salamat, N., Etemadi-Deylami, E., Movahedinia, A., & Mohammadi, Y. (2014). Heavy metals in selected tissues and histopathological changes in liver and kidney of common moorhen (Gallinula chloropus) from Anzali Wetland, the south Caspian Sea, Iran. Ecotoxicology and Environmental Safety, 110, 298–307.

    Article  CAS  Google Scholar 

  • Sartaj, M., Fathollahi, F., & Filizadeh, Y. (2005). An investigation of the evolution of distribution and accumulation of heavy metals (Cr, Ni, Cu, Cd, Zn and Pb) in Anzali wetland’s sediment. Iranian Journal of Natural Resources, 58(3), 623–634.

    CAS  Google Scholar 

  • Scarlett, A., Dissanayake, A., Rowland, S. J., & Galloway, T. S. (2009). Behavioral, physiological, and cellular responses following trophic transfer of toxic monoaromatic hydrocarbons. Environmental Toxicology and Chemistry, 28(2), 381–387.

    Article  CAS  Google Scholar 

  • Scarlett, A., Galloway, T. S., & Rowland, S. J. (2007). Chronic toxicity of unresolved complex mixtures (UCM) of hydrocarbons in marine sediment. Journal of Soils and Sediments, 7(4), 200–206.

    Article  CAS  Google Scholar 

  • Scarlett, A., Rowland, S. J., Galloway, T. S., Lewis, A. C., & Booth, A. M. (2008). Chronic sublethal effects associated with branched alkylbenzenes bioaccumulated by mussels. Environmental Toxicology and Chemistry, 27(3), 561–567.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T. (1982). Some applications of computerized GC-MS to the determination of biogenic and anthropogenic organic matter in environment. International Journal of Environmental Analytical Chemistry, 12(3–4), 177–193.

    Article  CAS  Google Scholar 

  • Simoneit, B. R. T., & Mazurek, M. A. (1982). Organic matter of the troposphere-II. Natural background of biogenic lipid matter in aerosols over the rural western United States. Atmospheric Environment, 16(9), 2139–2159.

    Article  CAS  Google Scholar 

  • Smith, E., Wraige, E., Donkin, P., & Rowland, S. (2001). Hydrocarbon humps in the marine environment: synthesis, toxicity, and aqueous solubility of monoaromatic compounds. Environmental Toxicology and Chemistry, 20(11), 2428–2432.

    Article  CAS  Google Scholar 

  • Staples, C. A., Peterson, D. R., Parkerton, T. F., & Adams, W. J. (1997). The environmental fate of phthalate esters: a literature review. Chemosphere, 35(4), 667–749.

    Article  CAS  Google Scholar 

  • Steinhauer, M. S., & Boehm, P. D. (1992). The composition and distribution of saturated and aromatic hydrocarbons in nearshore sediment, river sediment, and coastal peat of Alaskan Beaufort Sea: implications for detecting anthropogenic hydrocarbon inputs. Marine Environmental Research, 33(4), 223–253.

    Article  CAS  Google Scholar 

  • Tollefsen, K. E., Harman, C., Smith, A., & Thomas, K. V. (2007). Estrogen receptor (ER) agonists and androgen receptor (AR) antagonists in effluents from Norwegian North Sea oil production platforms. Marine Pollution Bulletin, 54(3), 277–283.

    Article  CAS  Google Scholar 

  • Tolosa, I., De Mora, S., Sheikholeslami, M. R., Villeneuve, J.-P., Bartocci, J., & Cattini, C. (2004). Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediment. Marine Pollution Bulletin, 48(1–2), 44–60.

    Article  CAS  Google Scholar 

  • Tran, K., Yu, C. C., & Zeng, E. Y. (1997). Organic pollutants in the coastal environment off San Diego, California. 2. Petrogenic and biogenic sources of aliphatic hydrocarbons. Environmental Toxicology Chemistry, 16(2), 189–195.

    Article  CAS  Google Scholar 

  • Veres, D. S. (2002). A comparative study between loss on ignition and total carbon analysis on mineralogenic sediment. Studia UBB Geologia, 47(1), 171–182.

    Article  Google Scholar 

  • Volkman, J. K., Holdsworth, D. G., Neill, G. P., & Bavor, H. J. (1992). Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediment. Science of the Total Environment, 112(2–3), 203–219.

    Article  CAS  Google Scholar 

  • Wang, X. C., Sun, S., Ma, H. Q., & Liu, Y. (2006). Sources and distribution of aliphatic and poly aromatic hydrocarbons in sediment of Jiaozhou Bay, Qingdao, China. Marine Pollution Bulletin, 52(2), 129–138.

    Article  CAS  Google Scholar 

  • Wang, C., Wang, W., He, S., Du, J., & Sun, Z. (2011). Sources and distribution of aliphatic and polycyclic aromatic hydrocarbons in Yellow River Delta Nature Reserve, China. Applied Geochemistry, 26(8), 1330–1336.

    Article  CAS  Google Scholar 

  • Xing, L., Tao, S., Zhang, H., Liu, Y., Yu, Z., & Zhao, M. (2011). Distributions and origins of lipid biomarkers in surface sediment from the southern Yellow Sea. Applied Geochemistry, 26(8), 1584–1593.

    Article  CAS  Google Scholar 

  • Yancheshmeh, R. A., Riyahi Bakhtiari, A., Mortazavi, S., & Savabieasfahani, M. (2014). Sediment PAH: contrasting levels in the Caspian Sea and Anzali Wetland. Marine Pollution Bulletin, 84(1–2), 391–400.

    Article  CAS  Google Scholar 

  • Zakaria, P. M., Okuda, T., & Takada, H. (2001). Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia: applications of biomarkers for identifying sources of oil pollution. Marine Pollution Bulletin, 42(12), 1357–1366.

    Article  CAS  Google Scholar 

  • Zamani, M., Khorasani, N., Riyahi Bakhtiari, A., & Rezaei, K. (2015). Source identification of perylene in surface sediment and waterbird eggs in the Anzali Wetland, Iran. Environmental Pollution, 205, 23–32.

    Article  CAS  Google Scholar 

  • Zamani-Ahmadmahmoodi, R., Esmaili-Sari, A., Mohammadi, J., Riyahi Bakhtiari, A., & Savabieasfahani, M. (2013). Spatial distribution of cadmium and lead in the sediment of the western Anzali wetlands on the coast of the Caspian Sea (Iran). Marine Pollution Bulletin, 74(1), 464–470.

    Article  CAS  Google Scholar 

  • Zrafi-Nouira, I., Khedir-Ghenim, Z., Zrafi, F., Bahri, R., Cheraeif, I., Rouabhia, M., et al. (2008). Hydrocarbon pollution in the sediment from the Jarzouna-Bizerte coastal area of Tunisia (Mediterranean Sea). Bulletin of Environmental Contamination and Toxicology, 80(6), 566–572.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by Tarbiat Modares University, Noor, Mazandaran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Riyahi-Bakhtiari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azimi-Yancheshmeh, R., Riyahi-Bakhtiari, A. & Savabieasfahani, M. Oil contamination in surface sediment of Anzali Wetland in Iran is primarily even carbon number n-alkanes. Environ Monit Assess 189, 589 (2017). https://doi.org/10.1007/s10661-017-6294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6294-7

Keywords

Navigation