Skip to main content

Advertisement

Log in

Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A case-control study was undertaken among the school children aged 8–15 years to know the presence and severity of dental fluorosis, nutrition and kidney status, and thyroid function along with bone metabolic indicators in Doda district situated at high altitude where drinking water was contaminated and heat stress. This study included 824 participants with an age of 8–15 years. The results of the study reviled that dental fluorosis was significantly higher in affected than control area children. Urinary fluoride was significantly higher (p < 0.05) in affected children as compared to the control area school children. Nutritional status of affected children was lower than control area children. The chronic kidney damage (CKD) was higher in affected than control school children. Thyroid function was affected more in affected than control area schools. Serum creatinine, total alkaline phosphatase, parathyroid hormone, 1, 25(OH)2 vitamin D, and osteocalcin were significantly higher in affected school children (p < 0.05) as compared to control school children, whereas there was no significant difference in triiodothyronine (T3), thyroxine (T4), and 25-OH vitamin D among the two groups. There was a significant decrease in thyroid-stimulating hormone (TSH) in the affected area school children compared to control. In conclusion, fluorotic area school children were more affected with dental fluorosis, kidney damage, along and some bone indicators as compared to control school children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Das, K., & Mondal, N. K. (2016). Dental fluorosis and urinary fluoride concentration as a reflection of fluoride exposure and its impact on IQ level and BMI of children of Laxmisagar, Simlapal Block of Bankura District, W.B., India. Environmental Monitoring and Assessment, 188(4), 218.

    Article  Google Scholar 

  • Dean, H.T. (1942). The investigation of physiological effects by the epidemiological method. In F. R. Moulton (Ed.), “Fluorine and dental health,” (pp.23–31). Washington, DC: American Association for the Advancement of Science, (Publication No. 19).

  • Ding, Y., Sun, H., Han, H., Wang, W., Ji, X., Liu, X., & Sun, D. (2011). The relationships between low levels of urine fluoride on children’s intelligence, dental fluorosis in endemic fluorosis areas in Hulunbuir, Inner Mongolia, China. Journal of Hazardous Materials, 186(2), 1942–1946.

    Article  CAS  Google Scholar 

  • Dusso, A., González, E. A., & Martin, K. J. (2011). Vitamin D in chronic kidney disease. Best practice and research. Clinical Endocrinology and Metabolism, 25(4), 647–655.

    CAS  Google Scholar 

  • Gupta, S. K., Khan, T. I., Gupta, R. C., Gupta, A. B., Gupta, K. C., Jain, P., & Gupta, A. (2001). Compensatory hyperparathyroidism following high fluoride ingestion—a clinco-biochemical correlation. Indian paediatrics, 38(2), 139–146.

    CAS  Google Scholar 

  • Hou, R., Mi, Y., Xu, Q., Wu, F., Ma, Y., Xue, P., & Yang, W. (2014). Oral health survey and oral health questionnaire for high school students in Tibet, China. Head and Face Medicine, 10, 17.

    Article  Google Scholar 

  • Inder, G., Kjyoti, M., & Shashi, K. (2000). Endemic fluorosis & non-ulcer dyspepsia in J&K State. JK Science. Journal of Medical Education & Research, 2, 25–31.

    Google Scholar 

  • Johnson, W., Taves, D.R., Jowsey, J. (1979). Fluoridation and bone disease in renal patients. In Continuing evaluation of the use of fluorides (pp. 275–293). Boulder:AAAS Selected Symposium. Westview Press.

  • Juncos, L. I., & Donadio, J. V. (1972). Renal failure and fluorosis. JAMA, 222(7), 783–785.

    Article  CAS  Google Scholar 

  • Kececi, A. D., Kaya, B. U., Guldas, E., Saritekin, E., & Sener, E. (2014). Evaluation of dental fluorosis in relation to DMFT rates in a fluoroticrural area of Turkey. Fluoride, 47(2), 119–132.

    Google Scholar 

  • Khandare, A. L., Harikumar, R., & Sivakumar, B. (2005). Severe bone deformities in young children from vitamin D deficiency and fluorosis in Bihar-India. Calcified Tissue International, 76(6), 412–418.

    Article  CAS  Google Scholar 

  • Ludlow, M., Luxton, G., & Mathew, T. (2007). Effects of fluoridation of community water supplies for people with chronic kidney disease. Nephrology Dialysis Transplantation, 22(10), 2763–2767.

    Article  Google Scholar 

  • Lunyera, J., Mohottige, D., Von Isenburg, M., Jeuland, M., Patel, U. D., & Stanifer, J. W. (2016). CKD of uncertain etiology: a systematic review. Clinical Journal of the American Society of Nephrology., 11(3), 379–385.

    Article  CAS  Google Scholar 

  • Mordes, J. B., Blume, F. D., Boyer, et al. (1983). High-altitude pituitary–thyroid dysfunction on Mount Everest. The New England Journal of Medicine, 308, 1135.

    Article  CAS  Google Scholar 

  • Pérez-Pérez, N., Irigoyen-Camacho, M. E., & Boges-Yañez, A. S. (2017). Factors affecting dental fluorosis in low socioeconomic status children in Mexico. Community Dental Health, 34(2), 66–71.

    Google Scholar 

  • Petersen, P. E., & Lennon, M. A. (2004). Effective use of fluorides for the prevention of dental caries in the 21st century: the WHO approach. Community Dentistry and Oral Epidemiology., 32, 319–321.

    Article  Google Scholar 

  • Qin, X., Wang, S., Yu, M., Zhang, L., Li, X., Zuo, Z., et al. (2009). Child skeletal fluorosis from indoor burning of coal in South western China. Journal of Environmental and Public Health, 2009, 969764.

  • Rango, T., Kravchenko, J., Atlaw, B., McCornick, P. G., Jeuland, M., Merola, B., et al. (2012). Groundwater quality and its health impact: an assessment of dental fluorosis in rural inhabitants of the Main Ethiopian Rift. Environment International, 43, 37–47.

    Article  CAS  Google Scholar 

  • Ranjith, W. D. (2015). Fluoride in drinking water and diet: the causative factor of chronic kidney diseases in the North Central Province of Sri Lanka. Environmental Health and Preventive Medicine, 20, 237–242.

    Article  Google Scholar 

  • Rastogi, G. K., Malhotra, M. S., Srivastava, M. C., et al. (1977). Study of the pituitary-thyroid functions at high altitude in man. The Journal of Clinical Endocrinology and Metabolism, 44, 447.

    Article  CAS  Google Scholar 

  • Ross, P. D., & Knowlton, W. (1998). Rapid bone loss is associated with increased levels of biochemical markers. Journal of Bone Mineral Research, 13(2), 297–302.

    Article  CAS  Google Scholar 

  • Saxena, S., Sahay, A., & Goel, P. (2012). Effect of fluoride exposure on the intelligence of school children in Madhya Pradesh, India. Journal of Neurosciences in Rural Practice, 3(2), 144–149.

    Article  Google Scholar 

  • Schwartz, G. J., Haycock, G. B., Edelmann Jr., C. M., & Spitzer, A. (1976). A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics, 58, 259–263.

    CAS  Google Scholar 

  • Shankar, P., Ghosh, S., Bhaskarachary, K., Venkaiah, K., & Khandare, A. L. (2013). Amelioration of chronic fluoride toxicity by calcium and fluoride-free water in rats. British Journal of Nutrition, 110(1), 95–104.

    Article  CAS  Google Scholar 

  • Singh, B., Gaur, S., & Garg, V. K. (2007). Fluoride in drinking water and human urine in Southern Haryana India. Journal of Hazardous Materials, 144, 147–151.

    Article  CAS  Google Scholar 

  • Singh, N., Verma, K. G., Verma, P., Sidhu, G. K., & Sachdeva, S. (2014). A comparative study of fluoride ingestion levels, serum thyroid hormone and TSH level derangements, dental fluorosis status among school children from endemic and non-endemic fluorosis areas. Springerplus, 3, 7.

    Article  Google Scholar 

  • Spencer, H., Lewin, I., Fowler, J., & Samachson, J. (1969). Effect of sodium fluoride on calcium absorption and balances in man. The American Journal of Clinical Nutrition, 22(4), 381–390.

    CAS  Google Scholar 

  • Susheela, A. K., Bhatnagar, M., Vig, K., & Mondal, N. K. (2005). Excess fluoride ingestion and thyroid hormone derangements in children living in Delhi, India. Fluoride, 38, 98–108.

    CAS  Google Scholar 

  • Thakuria, N. (2007). Fluorosis: Bone crusher in Assam, Blitz.

  • Tiwari, P., Kaur, S., & Sodhi, A. (2010). Dental fluorosis and its association with the use of fluoridated toothpaste among middle school students of Delhi. Indian Journal of Medical Sciences, 64(1), 1–6.

    Article  Google Scholar 

  • Tusl, J. (1970). Direct determination of fluoride in human urine using fluoride electrode. Clinica Chimica Acta, 27, 216–218.

    Article  CAS  Google Scholar 

  • Watanable, M., Kono, K., Orita, Y., Dote, T., Usuda, K., Takahashi, Y. (1994). Influence of dietary fluoride intake on urinary fluoride concentration and evaluation of corrected levels in spot urine. In Proceedings of the 20th Conference of the International Society for Fluoride Research, Beijing, China, September 5–9.

  • Waugh, D.T., Potter, W., Limeback, H., Godfrey, M. (2016). Risk assessment of fluoride intake from tea in the republic of Ireland and its implications for public health and water fluoridation. International Journal of Environmental Research and Public Health, 13(3), E259.

  • Whitford, G. M. (1999). Fluoride metabolism and excretion in children. Journal of Public Health Dentistry, 59(4), 224–228.

    Article  CAS  Google Scholar 

  • World Health Organization.(1996). Trace elements in human nutrition and health. Geneva.

  • Xiang, Q., Liang, Y., & Chen, B. (2010). Retraction: serum fluoride level and children’s intelligence quotient in two villages in China. Environmental Health Perspectives. https://doi.org/10.1289/ehp.1003171.

  • Xiong, X., Liu, J., He, W., Xia, T., He, P., Chen, X., & Wang, A. (2007). Dose–effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children. Environmental Research, 103(1), 112–116.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the “Indian Council of Medical Research” for funding the study. The authors also acknowledge the encouragement and guidance of the director-in-charge, National Institute of Nutrition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun L. Khandare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandare, A.L., Gourineni, S.R. & Validandi, V. Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district, Jammu and Kashmir, India. Environ Monit Assess 189, 579 (2017). https://doi.org/10.1007/s10661-017-6288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6288-5

Keywords

Navigation