Skip to main content

Advertisement

Log in

Estimating cadmium concentration in the edible part of Capsicum annuum using hyperspectral models

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Hyperspectral remote sensing can be applied to the rapid and nondestructive monitoring of heavy-metal pollution in crops. To realize the rapid and real-time detection of cadmium in the edible part (fruit) of Capsicum annuum, the leaf spectral reflectance of plants exposed to different levels of cadmium stress was measured using hyperspectral remote sensing during four growth stages. The spectral indices or bands sensitive to cadmium stress were determined by correlation analysis, and hyperspectral estimation models for predicting the cadmium content in the fruit of C. annuum during the mature growth stage were established. The models were cross validated by taking the sensitive spectral indices in the bud stage and the sensitive spectral bands in the flowering stage as the input variables. The results indicated that cadmium accumulated in the leaves and fruit of C. annuum and leaf cadmium content in the three early growth stages were correlated with the cadmium content of the pepper in the mature stage. Leaf spectral reflectance was sensitive to cadmium stress, and the first derivative of the original spectral reflectance was strongly correlated with leaf cadmium content during all growth stages. Among the established models, the multiple regression model based on the sensitive spectral bands in the flowering stage was optimal for predicting fruit cadmium content of the pepper. This model provides a promising method to ensure food safety during the early growth stage of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ai, J. Q., Chen, W. H., Chen, L. J., Zhang, Y. H., Zhou, Y. J., Guo, X. H., & Chu, W. D. (2015). Hyperspectral remote sensing estimation models for foliar photosynthetic pigment contents at canopy level in an invasive species, Spartina alterniflora. Acta Ecologica Sinica, 35(4), 1175–1186.

    Google Scholar 

  • Antonucci, F., Menesatti, P., Holden, N. M., Canali, E., Giorgi, S., Maienza, A., & Stazi, S. R. (2012). Hyperspectral visible and near-infrared determination of copper concentration in agricultural polluted soils. Communications in Soil Science and Plant Analysis, 43(10), 1401–1411.

    Article  CAS  Google Scholar 

  • Aguilar-Meléndez, A., Morrell, P. L., Roose, M. L., & Kim, S. C. (2009). Genetic diversity and structure in semiwild and domesticated chiles (Capsicum annuum; Solanaceae) from Mexico. American Journal of Botany, 96(6), 1190–1202.

    Article  Google Scholar 

  • Apan, A., Held, A., Phinn, S., & Markley, J. (2004). Detecting sugarcane ‘orange rust’ disease using EO-1 Hyperion hyperspectral imagery. International Journal of Remote Sensing, 25(2), 489–498.

    Article  Google Scholar 

  • Chang, C. Y., Yu, H. Y., Chen, J. J., Li, F. B., Zhang, H. H., & Liu, C. P. (2014). Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environmental Monitoring & Assessment, 186(3), 1547–1560.

    Article  CAS  Google Scholar 

  • Clemens, S., Aarts, M. G., Thomine, S., & Verbruggen, N. (2013). Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18(2), 92–99.

    Article  CAS  Google Scholar 

  • Cheraghi, M., Lorestani, B., & Yousefi, N. (2009). Effect of waste water on heavy metal accumulation in Hamedan Province vegetables. International Journal of Botany, 5(2), 190–193.

    Article  CAS  Google Scholar 

  • Daud, M. K., Mei, L., Azizullah, A., Dawood, M., Ali, L., Mahmood, Q., Ullah, W., Jamil, M., & Zhu, S. J. (2016). Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environmental Science & Pollution Research, 23(15), 15551–15564.

    Article  CAS  Google Scholar 

  • Dian, Y. Y., Le, Y., Fang, S. H., Xu, Y. R., Yao, C. H., & Liu, G. (2016). Influence of spectral bandwidth and position on chlorophyll content retrieval at leaf and canopy levels. Journal of the Indian Society of Remote Sensing, 44(4), 583–593.

    Article  Google Scholar 

  • Daughtry, C. S. T., Walthall, C. L., Kim, M. S., Colstoun, E. B. D., & Mcmurtrey, J. E. I. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.

    Article  Google Scholar 

  • Fan, Y. D., Wu, W., Wang, W., Liu, M., & Wen, Q. (2016). Research progress of disaster remote sensing in China. Journal of Remote Sensing, 20(5), 1170–1184.

    Google Scholar 

  • He, L., Zhang, H. Y., Zhang, Y. S., Song, X., Feng, W., Kang, G. Z., Wang, C. Y., & Guo, T. C. (2016). Estimating canopy leaf nitrogen concentration in winter wheat based on multi-angular hyperspectral remote sensing. European Journal of Agronomy, 73, 170–185.

    Article  CAS  Google Scholar 

  • Gu, Y. W., Li, S., Gao, W., & Wei, H. (2015). Hyperspectral estimation of the cadmium content in leaves of Brassica rapa chinesis based on the spectral parameters. Acta Ecologica Sinica, 35(13), 4445–4453.

    Google Scholar 

  • Gong, Z. N., Zhao, Y. L., Zhao, W. J., Lin, C., & Cui, T. X. (2014). Estimation model for plant leaf chlorophyll content based on the spectral index content. Acta Ecologica Sinica, 34(20), 5736–5745.

    Google Scholar 

  • Guan, L., & Liu, X. N. (2009a). Hyperspectral recognition models for physiological ecology characterization of rice in Cd pollution stress. Ecology and Environmental Sciences, 18(2), 488–493.

    Google Scholar 

  • Guan, L., Liu, X. N., & Cheng, C. Q. (2009). Research on hyperspectral information parameters of chlorophyll content of rice leaf in Cd-polluted soil environment. Spectroscopy and Spectral Analysis, 29(10), 2713–2716.

    CAS  Google Scholar 

  • Guan, L., & Liu, X. N. (2009b). Experimental research on remote sensing diagnosis method of Cd pollution stress in rice. Transactions of the CSAE, 25(6), 168–173.

    Google Scholar 

  • Galvao, L. S., Formaggio, A. R., & Tisot, D. A. (2005). Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment, 94, 523–534.

    Article  Google Scholar 

  • Hernandez-Bautista, L., Trejo-Tellez, L. I., Gomez-Merino, F. C., Garcia-Morales, S., & Tejeda-Sartorius, O. (2015). Physiological and nutrient changes in sweet pepper (Capsicum annuum L.) seedlings caused by cadmium. Revista Internacional De Contaminacion Ambiental, 31(4), 389–396.

    Google Scholar 

  • Huang, J. F., & Blackburn, G. A. (2011). Optimizing predictive models for leaf chlorophyll concentration based on continuous wavelet analysis of hyperspectral data. International Journal of Remote Sensing, 32(24), 9375–9396.

    Article  Google Scholar 

  • Huang, J. F., Wang, F. M., Wang, X. Z., Tang, Y. L., & Wang, R. C. (2004). Relationship between narrow band normalized deference vegetation index and rice agronomic variables. Communications in Soil Science and Plant Analysis, 35(19–20), 2689–2708.

    Article  CAS  Google Scholar 

  • Kahriman, F., Demirel, K., Inalpulat, M., Egesel, C. O., & Genc, L. (2016). Using leaf based hyperspectral models for monitoring biochemical constituents and plant phenotyping in maize. Journal of Agricultural Science and Technology, 18(6), 1705–1718.

    Google Scholar 

  • Kim, S., Park, M., Yeom, S. I., et al. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 46(3), 270–278.

    Article  CAS  Google Scholar 

  • Khurana, M. P. S., & Singh, P. (2012). Waste water use in crop production: a review. Resources & Environment, 2(4), 116–131.

    Article  Google Scholar 

  • Li, L. T., Ren, T., Ma, Y., Wei, Q. Q., Wang, S. Q., Li, X. K., Cong, R. H., Liu, S. S., & Lu, J. W. (2016b). Evaluating chlorophyll density in winter oilseed rape (Brassica napus L.) using canopy hyperspectral red-edge parameters. Computers and Electronics in Agriculture, 126, 21–31.

    Article  Google Scholar 

  • Li, Y. Y., Chang, Q. R., Liu, X. Y., Yan, L., Luo, D., & Wang, S. (2016a). Estimation of maize leaf SPAD value based on hyperspectrum and BP neural network. Transactions of the Chinese Society of Agricultural Engineering, 32(16), 135–142.

    CAS  Google Scholar 

  • Li, L. T., Wang, S. Q., Ren, T., Ma, Y., Wei, Q. Q., Gao, W. H., & Lu, J. W. (2016c). Evaluating models of leaf phosphorus content of winter oilseed rape based on hyperspectral data. Transactions of the Chinese Society of Agricultural Engineering, 32(14), 209–218.

    Google Scholar 

  • Liu, K., Zhou, Q. B., Wu, W. B., Chen, Z. X., & Tang, H. J. (2016). Comparison between multispectral and hyperspectral remote sensing for LAI estimation. Transactions of the Chinese Society of Agricultural Engineering, 32(3), 155–162.

    CAS  Google Scholar 

  • Li, X. Q., Liu, X. N., Liu, M. L., Wang, C. C., & Xia, X. P. (2015). A hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress. International Journal of Applied Earth Observation and Geoinformation, 36, 41–53.

    Article  Google Scholar 

  • Liu, M. L., Liu, X. N., Li, J., & Li, T. (2012). Estimating regional heavy metal concentrations in rice by scaling up a field-scale heavy metal assessment model. International Journal of Applied Earth Observation and Geoinformation, 19(1), 12–23.

    Article  Google Scholar 

  • Liu, M. L., Liu, X. N., Ding, W. C., & Wu, L. (2011). Monitoring stress levels on rice with heavy-metal pollution from hyperspectral reflectance data using wavelet-fractal analysis. International Journal of Applied Earth Observation and Geoinformation, 13(2), 246–255.

    Article  Google Scholar 

  • Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62(1), 21–37.

    Article  CAS  Google Scholar 

  • Ministry of Health of the PRC. (2012). Limits of contaminants in food (pp. GB2762–GB2012). Beijing: Standards Press of China.

    Google Scholar 

  • Merton, R., & Huntington, J. (1999). Early simulation of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. Summaries of the Eight JPL airborne earth science workshop, 99(17), 299–307.

    Google Scholar 

  • Neinavaz, E., Darvishzadeh, R., Skidmore, A. K., & Groen, T. A. (2016). Measuring the response of canopy emissivity spectra to leaf area index variation using thermal hyperspectral data. International Journal of Applied Earth Observation & Geoinformation., 53, 40–47.

    Article  Google Scholar 

  • Ogunjemiyo, S., Roberts, D. A., Keightley, K., Ustin, S. L., Hinckley, T., & Lamb, B. (2002). Evaluating the relationship between AVIRIS water vapor and poplar plantation evapotranspiration. Journal of Geophysical Research, 107, ACL 20–1–ACL 20–15.

    Article  Google Scholar 

  • Pan, X. D., Wu, P. G., & Jiang, X. G. (2016). Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Scientific Reports, 6, 20317.

    Article  CAS  Google Scholar 

  • Rathod, P. H., Brackhage, C., Meer, F. D. V. D., Muller, I., Noomen, M. F., Rossiter, D. G., & Dudel, G. E. (2015). Spectral changes in the leaves of barley plant due to phytoremediation of metals—results from a pot study. European Journal of Remote Sensing, 48(3), 283–302.

    Article  Google Scholar 

  • Rafiq, M. T., Aziz, R., Yang, X. E., Xiao, W. D., Rafiq, M. K., Ali, B., & Li, T. Q. (2014). Cadmium phytoavailability to rice ( Oryza sativa, L.) grown in representative Chinese soils. A model to improve soil environmental quality guidelines for food safety. Ecotoxicology and Environmental Safety, 103(1), 101–107.

    Article  CAS  Google Scholar 

  • Rouse, J. W. J., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. Nasa Special Publication, 1, 309–317.

    Google Scholar 

  • Suarez, L. A., Apan, A., & Werth, J. (2016). Hyperspectral sensing to detect the impact of herbicide drift on cotton growth and yield. ISPRS Journal of Photogrammetry and Remote Sensing, 120, 65–76.

    Article  Google Scholar 

  • Stazi, S. R., Antonucci, F., Pallottino, F., Costa, C., Marabottini, R., Petruccioli, M., & Menesatti, P. (2014). Hyperspectral visible–near infrared determination of arsenic concentration in soil. Communications in Soil Science and Plant Analysis, 45(22), 2911–2920.

    Article  CAS  Google Scholar 

  • Tang, X., Li, Q., Wu, M., Lin, L., & Scholz, M. (2016). Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. Journal of Environmental Management, 181, 646–662.

    Article  CAS  Google Scholar 

  • Tong, Q. X., Zhang, B., & Zhang, L. F. (2016). Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20(5), 689–707.

    Google Scholar 

  • Wang, G. P., Yang, K. M., Zhang, W. W., Zhuo, W., & Zhang, W. W. (2016). Qualitative discrimination of heavy metal contamination in corn leaf with weak spectral information. Chinese Journal of Environmental Engineering, 10(8), 4601–4606.

    Google Scholar 

  • Wang, W., Ni, X. Z., Lawrence, K. C., Yoon, S. C., Heitschmidt, G. W., & Feldner, P. (2015). Feasibility of detecting Aflatoxin B1 in single maize kernels using hyperspectral imaging. Journal of Food Engineering, 166, 182–192.

    Article  CAS  Google Scholar 

  • Wu, L., Liu, X. N., Wang, P., Zhou, B. T., Liu, M. L., & Li, X. Q. (2013). The assimilation of spectral sensing and the WOFOST model for the dynamic simulation of cadmium accumulation in rice tissues. International Journal of Applied Earth Observation and Geoinformation, 25(1), 66–75.

    Article  Google Scholar 

  • Wiegand, C., Anderson, G., Lingle, S., & Escobar, D. (1996). Soil salinity effects on crop growth and yield: illustration of an analysis and mapping methodology for sugarcane. Journal of Plant Physiology, 148(3–4), 418–424.

    Article  CAS  Google Scholar 

  • Xu, H. (2009). Study on analytical methods and preparation of instrument for heavy metals determination in food. East china normal university.

  • Yang, X. H., Wang, F. M., Huang, J. F., Wang, J. W., Wang, R. C., Shen, Z. Q., & Wang, X. Z. (2009). Comparison between radial basis function neural network and regression model for estimation of rice biophysical parameters using remote sensing. Soil Science Society of China, 19(2), 176–188.

    Google Scholar 

  • Zhao, Y. R., Li, X. L., Yu, K. Q., Cheng, F., & He, Y. (2016). Hyperspectral imaging for determining pigment contents in cucumber leaves in response to angular leaf spot disease. Scientific Reports, 6, 27790.

    Article  CAS  Google Scholar 

  • Zhou, X. F., Huang, W. J., Kong, W. Q., Ye, H. C., Luo, J. H., & Chen, P. F. (2016). Remote estimation of canopy nitrogen content in winter wheat using airborne hyperspectral reflectance measurements. Advances in Space Research, 58, 1627–1637.

    Article  CAS  Google Scholar 

  • Zhang, Y. H., Chen, W. H., Guo, Q. Y., & Zhang, Q. L. (2013). Hyperspectral estimation models for photosynthetic pigment contents in leaves of Eucalyptus. Acta Ecologica Sinica, 33(3), 0876–0887.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their constructive comments and suggestions.

Funding

This work was supported by grants from the International Sci-Tech Cooperation Project of Ministry of Science and Technology [grant number 2015DFA90900]; the Follow-up Work of Ecological Biodiversity Conservation Project in the Three Gorges Reservoir Area [grant number 5000002013BB5200002]; and the Fundamental Research Funds for the Central Universities [grant number XDJK2017D104].

Author information

Authors and Affiliations

Corresponding author

Correspondence to Hong Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Wei, H., Zhou, C. et al. Estimating cadmium concentration in the edible part of Capsicum annuum using hyperspectral models. Environ Monit Assess 189, 548 (2017). https://doi.org/10.1007/s10661-017-6261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6261-3

Keywords