Skip to main content
Log in

Risk assessment and monitoring of dinotefuran and its metabolites for Chinese consumption of apples

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Residues of dinotefuran and its metabolites, 1-methyl-3-(tetrahydro-3-furylmethyl)urea (UF) and 1-methyl-3-(tetrahydro-3-furylmethyl)guanidine (DN), in apple were investigated using a “QuEChERS” (quick, easy, cheap, effective, rugged, safe) pretreatment and liquid chromatography–tandem mass spectrometry. Limits of detection (LODs) and quantification (LOQs) of dinotefuran, UF, and DN in apples were 0.011–0.960 and 0.037–3.200 μg/kg, respectively. The average recoveries of dinotefuran, UF, and DN in apple ranged from 70.0 to 83.6% with relative standard deviations less than 13%. A formulation of 20% water-dispersible dinotefuran granules was sprayed at 1–1.5-fold the recommended dose 3–4 times on apple trees. Total terminal residues of dinotefuran in apple were less than 2 mg/kg, which is the maximum residue limit (MRL) set by Japan. When following the recommended application guidelines, dinotefuran is unlikely to present significant health concerns to the Chinese population because the risk quotient (RQ) is less than 100%. This work could provide guidance for the safe use of dinotefuran and serve as a reference for the establishment of a maximum residue limit of dinotefuran in apple in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenk, F. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86, 412–431.

    CAS  Google Scholar 

  • Aprikian, O., Levrat-Verny, M. A., Besson, C., Busserolles, J., Rémésy, C., & Demigné, C. (2001). Apple favourably affects parameters of cholesterol metabolism and of anti-oxidative protection in cholesterol-fed rats. Food Chemistry, 75, 445–452.

    Article  CAS  Google Scholar 

  • Arts, I. C. W., Hollman, P. C. H., De Mesquita, H. B. B., Feskens, E. J. M., & Kromhout, D. (2001). Dietary catechins and epithelial cancer incidence: the Zutphen Elderly Study. International Journal of Cancer, 92, 298–302.

    Article  CAS  Google Scholar 

  • Chen, Z. L., Dong, F. S., Li, S. S., Zheng, Z. T., Xu, Y. W., Xu, J., Liu, X. G., & Zheng, Y. Q. (2015a). Response surface methodology for the enantioseparation of dinotefuran and its chiral metabolite in bee products and environmental samples by supercritical fluid chromatography/tandem mass spectrometry. Journal of Chromatography A, 1410, 181–189.

    Article  CAS  Google Scholar 

  • Chen, X., Dong, F. S., Xu, J., Liu, X. G., Wang, Y. H., & Zheng, Y. Q. (2015b). Enantioselective degradation of chiral insecticide dinotefuran in greenhouse cucumber and soil. Chirality, 27, 137–141.

    Article  CAS  Google Scholar 

  • Chun, O. K., & Kang, H. G. (2003). Estimation of risks of pesticide exposure, by food intake, to Koreans. Food and Chemical Toxicology, 41, 1063–1076.

    Article  CAS  Google Scholar 

  • De Oliveira, M. C., Sichieri, R., & Moura, A. M. (2003). Weight loss associated with a daily intake of three apples or three pears among overweight women. Nutrition, 19, 253–256.

    Article  Google Scholar 

  • Eberhardt, M. V., Lee, C. Y., & Liu, H. R. (2000). Nutrition: antioxidant activity of fresh apples. Nature, 405, 903–904.

    CAS  Google Scholar 

  • FAO(Food and Agriculture Organization of the United Nations)/WHO (World Health Organization) (2009). Principles and methods for the risk assessment of chemicals in food. Environmental Health Criteria 240. http://www.who.int/foodsafety/publications/chemicalfood/en/. Accessed 10 Sept 2016.

  • FAO (Food and Agriculture Organization of the United Nations)/WHO (World Health Organization) (2014). Guidelines for the design and implementation of national regulatory food safety assurance programme associated with the use of veterinary drugs in food producing animals. Environmental CAC/GL 71-2009. http://www.fao.org/fao-who-codexalimentarius/shproxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCAC%2BGL%2B71-2009%252FCXG_071e_2014.pdf. Accessed 10 Sept 2016.

  • Feskanich, D., Ziegler, R. G., Michaud, D. S., Giovannucci, E. L., Speizer, F. E., Willett, W. C., & Colditz, G. A. (2000). Prospective study of fruit and vegetable consumption and risk of lung cancer among men and women. Journal of the National Cancer Institute, 92, 1812–1823.

    Article  CAS  Google Scholar 

  • Fu, Y., Liu, F. F., Zhao, Y., Liu, Y. H., & Zhu, G. N. (2015). Distribution of chlorpyrifos in rice paddy environment and its potential dietary risk. Journal of Environment Sciences, 35, 101–107.

    Article  Google Scholar 

  • Hyson, D., Studebaker-Hallman, D., Davis, P. A., & Gershwin, M. E. (2000). Apple juice consumption reduces plasma low-density lipoprotein oxidation in heathy men and women. Journal of Medical Food, 3, 159–166.

    Article  CAS  Google Scholar 

  • JMPR (The Joint FAO/WHO Meeting on Pesticide Residues) (2012). JMPR Report: Dunotefuran. No.255. http://www.fao.org/fileadmin/templates/agphone/documents/pests_Pesticide/JMPR/Report12/Dinotefuran.pdf. Accessed 10 Sept 2016.

  • Kamel, A. (2010). Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography−tandem mass spectrometry (LC-MS/MS). Journal of Agricultural and Food Chemistry, 58, 5926–5931.

    Article  CAS  Google Scholar 

  • Kanrar, B., Mandal, S., & Bhattacharyya, A. (2010). Validation and uncertainty analysis of a multiresidue method for 42 pesticides in made tea, tea infusion and spent leaves using ethyl acetate extraction and liquid chromatography−tandem mass spectrometry. Journal of Chromatography A, 1217, 1926–1933.

    Article  CAS  Google Scholar 

  • Lee, K. G., & Lee, S. K. (2012). Monitoring and risk assessment of pesticide residues in yuza fruits (Citrus junos Sieb. ex Tanaka) and yuza tea samples produced in Korea. Food Chemistry, 135, 2930–2933.

    Article  CAS  Google Scholar 

  • Lehotay, S. (2007). Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: collaborative study. Journal of AOAC International, 90, 485–520.

    CAS  Google Scholar 

  • Li, R. J., Liu, T. J., Cui, S. H., Zhang, S. C., Yu, H. L., & Song, G. C. (2017). Residue behaviors and dietary risk assessment of dinotefuran and its metabolites in Oryza sativa by a new HPLC−MS/MS method. Food Chemistry, 235, 188–193.

    Article  CAS  Google Scholar 

  • Liu, S. Y., Zhen, Z. T., Wei, F. L., Ren, Y. P., Gui, W. J., Wu, H. M., & Zhu, G. N. (2010). Simultaneous determination of seven neonicotinoid pesticide residues in food by ultraperformance liquid chromatography tandem mass spectrometry. Journal of Agriculture and Food Chemistry, 58, 3271–3278.

    Article  CAS  Google Scholar 

  • Liu, C. Y., Lu, D. H., Wang, Y. C., Huang, J. X., Wan, K., & Wang, F. H. (2014). Residue and risk assessment of pyridaben in cabbage. Food Chemistry, 149, 233–236.

    Article  CAS  Google Scholar 

  • Lozowicka, B. (2015). Health risk for children and adults consuming apples with pesticide residue. Science of the Total Environment, 502, 184–198.

    Article  CAS  Google Scholar 

  • Lozowicka, B., Kaczynski, P., Paritova, A. E., Kuzembekova, G. B., Abzhalieva, A. B., Sarsembayeva, N. B., & Alihan, K. (2014). Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food and Chemical Toxicology, 64, 238–248.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Park, J. H., Abd El-Aty, A. M., Choi, J. H., Yang, A., Park, K. H., Mahmud, M. N. U. A., Im, G. J., & Shim, J. H. (2013). Feasibility and application of an HPLC/UVD to determine dinotefuran and its shorter wavelength metabolites residues in melon with tandem mass confirmation. Food Chemistry, 136, 1038–1046.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Abd El-Aty, A. M., Choi, J. H., Kim, S. W., Shin, S. C., & Shim, J. H. (2015). Consequences of the matrix effect on recovery of dinotefuran and its metabolites in green tea during tandem mass spectrometry analysis. Food Chemistry, 168, 445–453.

    Article  CAS  Google Scholar 

  • Rawn, D. F. K., Quade, S. C., Sun, W. F., Fouguet, A., Bélanger, A., & Smith, M. (2008). Captan residue reduction in apples as a result of rinsing and peeling. Food Chemistry, 109, 790–796.

    Article  CAS  Google Scholar 

  • SANCO (Health and Consumers DGs) (2009). Method validation and quality control procedures for pesticide residues analysis in food and feed. SANCO/10684/2009. http://www.eurl-pesticides.eu/library/docs/allcrl/AqcGuidance_Sanco_2009_10684.pdf. Assessed 10 Sept 2016.

  • Simon, S., Brun, L., Guinaudeau, J., & Sauphanor, B. (2011). Pesticide use in current and innovative apple orchard systems. Agronomy for Sustainable Development, 31, 541–555.

    Article  CAS  Google Scholar 

  • Sun, M. N., Dong, X., Wang, M., Xiao, Q. Q., Liu, Y. P., Sun, H. B., Duan, J. S., & Gao, T. C. (2016). Dissipation, residues and dietary risk assessment of dinotefuran in rice. Chinese Journal of Pesticide Science, 18(1), 86–92.

    CAS  Google Scholar 

  • Tanner, G., & Czerwenka, C. (2011). LC-MS/MS analysis of neonicotinoid insecticides in honey: methodology and residue findings in Austrian honeys. Journal of Agricultural and Food Chemistry, 59, 12271–12277.

    Article  CAS  Google Scholar 

  • Ticha, J., Hajslova, J., Jech, M., Honzicek, J., Lacina, O., Kohoutkova, J., Krocourek, V., Lansky, M., Kloutvorova, J., & Falta, V. (2008). Changes of pesticide residues in apples during cold storage. Food Control, 19, 247–256.

    Article  CAS  Google Scholar 

  • Watanabe, E., Baba, K., & Eun, H. S. (2007). Simultaneous determination of neonicotinoid insecticide in agriculture samples by soild-phase extraction cleanup and liquid chromatography equipped with diode-array detection. Journal of Agricultural and Food Chemistry, 55, 3798–3804.

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (2012). GEMS/Food cluster diets−2012. GEMS/Food consumption database. https://extranet.who.int/sree/Reports?op=vs&path=/WHO_HQ_Reports/G7/PROD/EXT/GEMS_cluster_diets_2012&userid=G7_ro&password=inetsoft123. Assessed 10 Sept 2016.

  • Zhang, Z. H., Li, H. Y., Wu, M., Yuan, Y. W., Hu, X. Q., & Zheng, W. R. (2009). Residue and risk assessment of chlorothalonil, myclobutanil and pyraclostrobin in greenhouse strawberry. Chinese Journal of Pesticide Science, 11, 449–455.

    CAS  Google Scholar 

  • Zhang, Y., Xu, J., Dong, F. S., Liu, X. G., Li, X. G., Li, Y. B., Wu, X. H., Liang, X. Y., & Zheng, Y. Q. (2013). Simultaneous determination of four neonicotinoid insecticide residues in cereals, vegetables and fruits using ultra-performance liquid chromatography/tandem mass spectrometry. Analytical Methods, 5, 1449–1455.

    Article  CAS  Google Scholar 

  • Zhou, L., Luo, F. J., Zhang, X. Z., Jiang, Y. P., Luo, Z. Y., & Chen, Z. G. (2016). Dissipation, transfer and safety evaluation of emamectin benzoate in tea. Food Chemistry, 202, 199–204.

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Major State Research Development Program of China (No. 2016YFD0200203-3) and the National Natural Science Foundation of China (No. 21402034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kankan Zhang or Deyu Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, W., Huang, M., Chen, J. et al. Risk assessment and monitoring of dinotefuran and its metabolites for Chinese consumption of apples. Environ Monit Assess 189, 521 (2017). https://doi.org/10.1007/s10661-017-6239-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6239-1

Keywords

Navigation