Advertisement

Prioritisation of native legume species for further evaluation as potential forage crops in water-limited agricultural systems in South Africa

  • Francuois L. MüllerEmail author
  • Lincoln M. Raitt
  • Samson B. M. Chimphango
  • M. Igshaan Samuels
  • Clement F. Cupido
  • J. Stephen Boatwright
  • Richard Knight
  • Marike Trytsman
Article

Abstract

In the face of climate change, identification of forage species suitable for dryland farming under low rainfall conditions in South Africa is needed. Currently, there are only a limited number of forage species suitable for dryland farming under such conditions. The objective of this study was to identify and prioritise native legume species that could potentially be used in dryland farming systems in water-limited agro-ecosystems in South Africa. Using a combination of ecological niche modelling techniques, plant functional traits, and indigenous knowledge, 18 perennial herbaceous or stem-woody legume species were prioritised for further evaluation as potential fodder species within water-limited agricultural areas. These species will be evaluated further for their forage quality and their ability to survive and produce enough biomass under water limitation and poor edaphic conditions.

Keywords

Arid environments Fabaceae Leguminosae Ecological niche models Perennial forage species South African native legumes 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arias, L., Losada, H., Rendón, A., Grande, D., Vieyra, J., Soriano, R., Rivera, J. & Cortes, J. (2003). Evaluation of Chipilin (Crotalaria longirostrata) as a forage resource for ruminant feeding in the tropical areas of Mexico. Livestock Research for Rural Development 15. http://lrrd.cipav.org.co/lrrd15/4/aria154.htm.
  2. Bennett, R. G., Ryan, M. H., Colmer, T. D., & Real, D. (2011). Prioritisation of novel pasture species for use in water-limited agriculture: a case study of Cullen in the Western Australian wheatbelt. Genetic Resources and Crop Evolution, 58, 83–100.CrossRefGoogle Scholar
  3. Bennett, R. G., Colmer, T. D., Real, D., Renton, M., & Ryan, M. H. (2012). Phenotypic variation for productivity and drought tolerance is widespread in germplasm collections of Australian Cullen species. Crop & Pasture Science, 63, 656–671.CrossRefGoogle Scholar
  4. Bewley, J. D., & Black, M. (1994). Seeds: physiology of development and germination (2nd ed.). New York: Plenum Press.CrossRefGoogle Scholar
  5. Bewley, J. D., Bradford, K., Hilhorst, H., & Nonogaki, H. (2013). Seeds: physiology of development, germination and dormancy (3rd ed.). NewYork: Springer-Verlag.CrossRefGoogle Scholar
  6. Brand, T. S., Franck, F., Durand, A., & Coetzee, J. (2000). The intake and nutritional status of sheep grazing wheat stubble. Small Ruminant Research, 35, 29–38.CrossRefGoogle Scholar
  7. Brundyn, L., Brand, T. S., Ferreira, A. V., Aucamp, B. B., & Durand, A. (2005). The effect of frequency of supplementation on the production of South African Mutton Merino ewes grazing wheat stubble. South African Journal of Animal Science, 6, 13–18.Google Scholar
  8. Campbell-Young, G. J. (2013). Plants of the greater cape floristic region. 2: The extra Cape Flora (pp. 379–399). Strelitzia 30. In D. A. Snijman (Ed.), Fabaceae. Pretoria: South African National Biodiversity Institute.Google Scholar
  9. Carpenter, G., Gillison, A. N., & Winter, J. (1993). DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation, 2, 667–680.CrossRefGoogle Scholar
  10. Cocks, P. S. (2001). Ecology of herbaceous perennial legumes: a review of characteristics that may provide management options for the control of salinity and waterlogging in dryland cropping systems. Australian Journal of Agricultural Research, 52, 137–151.CrossRefGoogle Scholar
  11. De Meyer, S. E., Cnockaert, M., Ardley, J. K., van Wyk, B.-E., Vandamme, P. A., & Howieson, J. G. (2014). Burkholderia dilworthii sp. nov., isolated from Lebeckia ambigua root nodules. International Journal of Systematic and Evolutionary Microbiology, 64, 1090–1095.CrossRefGoogle Scholar
  12. Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S., & Courbois, C. (2001). Livestock to 2020: the next food revolution. Outlook on Agriculture, 30, 27–29.CrossRefGoogle Scholar
  13. Dickinson, E. B., Hyam, G. F. S., Breytenbach, W. A. S., Metcaf, H. D., Williams, F. R., Scheepers, L. J., Plint, A. P., Smith, H. R. H., van Vuuren, P. J., Viljoen, J. H., Archibald, K. P., & Els, J. M. (2010). Pasture handbook (2nd ed.). Singapore: Craft Print International Ltd.Google Scholar
  14. FAO (Food and Agriculture Organisation of the United Nations) (2005). Fertiliser use by crop in South Africa. Rome. Available from: ftp://ftp.fao.org/agl/agll/docs/fertusesouthafrica.pdf.
  15. Gerding, M., Howieson, J. G., O’Hara, G. W., Real, D., & Bräu, L. (2013a). Establishment and survival of the South African legume Lessertia spp. and rhizobia in Western Australian agricultural systems. Plant and Soil.  https://doi.org/10.1007/s11104-013-1632-1.
  16. Gerding, M., O’Hara, G. E., Bräu, L., Nandasena, K., & Howieson, J. G. (2013b). Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia. Plant and Soil, 358, 385–401.CrossRefGoogle Scholar
  17. Gerding, M., O’Hara, G. E., Howieson, J. G., & Bräu, L. (2014). Overcoming non-selective nodulation of Lessertia by soil-borne rhizobium in the presence of inoculant mesorhizobium. Plant and Soil, 380, 117–132.CrossRefGoogle Scholar
  18. Hale, M. G., & Orcutt, D. M. (1987). The physiology of plants under stress. Toronto: John Wiley and Sons.Google Scholar
  19. Harradine, A. R., & Whalley, R. D. B. (1978). Nitrogen response of seedlings of Aristida ramosa and Danthonia spp. Australian Journal of Agricultural Research, 29, 759–772.CrossRefGoogle Scholar
  20. Hassen, A., Pieterse, P. A., & Rethman, N. F. G. (2004). Effect of pre-planting seed treatment on dormancy breaking and germination of Indigofera accessions. Tropical Grasslands, 38, 154–157.Google Scholar
  21. Hassen, A., Rethman, N. F. G., & Apostolides, Z. (2006a). Morphological and agronomic characterisation of Indigofera species using multivariate analysis. Tropical Grasslands, 40, 45–59.Google Scholar
  22. Hassen, A., van Niekerk, W. A., Rethman, N. F. G., & Tjelele, T. J. (2006b). Intake and in vitro digestibility of Indigofera forage compared to Medicago sativa and Leucaena leucocephala by sheep. South African Journal of Animal Science, 36, 67–70.Google Scholar
  23. Hassen, A., Rethman, N. F. G., Apostolides, Z., & Van Niekerk, W. A. (2007). Influence of moisture stress on growth, dry matter yield and allocation, water use and water-use efficiency of four Indigofera species. African Journal of Range and Forage Science, 24, 25–34.CrossRefGoogle Scholar
  24. Hassen, A., Rethman, N. F. G., Apostolides, Z., & Van Niekerk, W. A. (2008). Forage production and potential nutritive value of 24 shrubby Indigofera accessions under field conditions in South Africa. Tropical Grasslands, 42, 96–103.Google Scholar
  25. Herrero, M., Thornton, P. K., Gerber, P., & Reid, R. S. (2009). Livestock, livelihoods and the environment: understanding the trade-offs. Current Opinion in Environmental Sustainability, 1, 111–120.CrossRefGoogle Scholar
  26. Herrero, M., Wirsenius, S., Henderson, B., Rigolot, C., Thornton, P., Havlik, P., Boer, I., & Gerber, P. (2015). Livestock and the environment: what have we learned in the past decade. Annual Review of Environment and Resources, 40, 177–202.CrossRefGoogle Scholar
  27. Hijmans, R. J., Guarino, L., Cruz, M., & Rojas, E. (2001). Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter, 127, 15–19.Google Scholar
  28. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  29. Houghton, J., Thompson, K., & Rees, M. (2013). Does seed mass drive the differences in relative growth rate between growth forms? Proceedings of the Royal Society B, 280, 20130921.  https://doi.org/10.1098/rspb.2013.0921.CrossRefGoogle Scholar
  30. Howieson, J. G., Yates, R. J., Foster, K. J., Real, D., & Besier, R. B. (2008). Prospects for the future use of legumes. In M. J. Dilworth, E. K. James, J. I. Sprent, & W. E. Newton (Eds.), Nitrogen-fixing leguminous symbioses (pp. 363–393). Dordrecht: Springer.Google Scholar
  31. Howieson, J. G., De Meyer, S. E., Vivas-Marfisi, A., Ratnayake, S., Ardley, J. K., & Yates, R. J. (2013). Novel Burkholderia bacteria isolated from Lebeckia ambigua—a perennial suffrutescent legume of the fynbos. Soil Biology and Biochemistry, 60, 55–64.CrossRefGoogle Scholar
  32. Hunt, R., & Cornelissen, J. H. C. (1997). Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytologist, 135, 395–417.CrossRefGoogle Scholar
  33. IPCC (Intergovernmental Panel on Climate Change) (2007). Climate change 2007: impacts, adaptation and vulnerability. Summary for Policy Makers. http://www.ipcc.cg/SPM13apr07.pdf.
  34. Jordaan, A.J., Sakulski, D., & Jordaan, A.D. (2013). Interdisciplinary drought risk assessment for agriculture: the case of communal farmers in the Northern Cape Province South Africa. South African Journal of Agricultural Extention, 44–58.Google Scholar
  35. Loi, A., Nutt, B. J., & Revel, C. K. (2008). Domestication of new annual pasture legumes for resilient Mediterranean farming systems. Options Méditerranéennes, 79, 363–371.Google Scholar
  36. Ludlow, M. M. (1980). Stress physiology of tropical pasture plants. Tropical Grasslands, 14, 136–145.Google Scholar
  37. Luseno, W. K., Mcpeak, J. G., Barrett, C. B., Little, D., & Gebru, G. (2003). Assessing the value of climate forecast information for pastoralists: evidence from Southern Ethiopia and Northern Kenya. World Development, 31, 1477–1494.CrossRefGoogle Scholar
  38. McPeak, J. (2006). Confronting the risk of asset loss: what role do livestock transfers in northern Kenya play? The Journal of Development Studies, 81, 415–437.Google Scholar
  39. Meissner, H. H., Scholtz, M. M., & Engelbrecht, F. A. (2013a). Sustainability of the South African livestock sector towards 2050. Part 2: challenges, changes and required implementations. South African Journal of Animal Science, 43, 298–319.Google Scholar
  40. Meissner, H. H., Scholtz, M. M., & Palmer, A. R. (2013b). Sustainability of the South African livestock sector towards 2050. Part 1: worth and impact of the sector. South African Journal of Animal Science, 43, 282–296.CrossRefGoogle Scholar
  41. Mitchell, M. L., Norman, H. C., & Whalley, D. B. (2015). Use of functional traits to identify Australian forage grasses, legumes and shrubs for domestication and use in pastoral areas under a changing climate. Crop & Pasture Science, 66, 71–89.Google Scholar
  42. Morton, J. F. (2007). The impact of climate change on smallholder and subsistence agriculture. Proceedings of the National Academy of Sciences, 104, 19680–19685.CrossRefGoogle Scholar
  43. Muir, J. P., Dubeux, J. C. B., Dos Santos, M. V. F., Maposse, I. C., Pitman, W. D., & Butler, T. J. (2014). Challenges to domesticating native forage legumes. Tropical Grasslands, 2, 94–96.CrossRefGoogle Scholar
  44. Mukheibir, P. (2008). Water resources management strategies for adaptation to climate-induced impacts in South Africa. Water Resources Management, 22, 1259–1276.CrossRefGoogle Scholar
  45. Müller, F. L., Raitt, L. M., Cupido, C. F., Chimphango, S. B. M., Samuels, M. I., & Boatwright, J. S. (2017). Dormancy-breaking treatments in two potential forage crop legumes from the semi-arid rangelands of South Africa. South African Journal of Botany, 113, 133–136.CrossRefGoogle Scholar
  46. Naim, A. H., Hassan El Hadi, A., & Ahmed, F. E. G. (2015). Evaluation of different pre-sowing seed treatments to break dormancy of Crotalaria senegalensis, a famous rangeland forage in Sudan. Asian Journal of Plant Science and Research, 5, 16–21.Google Scholar
  47. Nichols, P. G. H., Loi, A., Nutt, B. J., Evans, P. M., Craig, A. D., Pengelly, B. C., Dear, B. S., Lloyd, D. L., Revell, C. K., Nair, R. M., Ewing, M. A., Howieson, J. G., Auricht, G. A., Howie, J. H., Sandral, G. A., Carr, S. J., de Koning, C. T., Hackney, B. F., Crocker, G. J., Snowball, R., Hughes, S. J., Hall, E. J., Foster, K. J., Skinner, P. W., Barbetti, M. J., & You, M. P. (2007). New annual and short-lived perennial pasture legumes for Australian agriculture—15 years of revolution. Field Crops Research, 104, 10–23.CrossRefGoogle Scholar
  48. Nichols, P. G. H., Loi, A., Nutt, B. J., Snowball, R., & Revell, C. K. (2010). Sustainable use of genetic diversity in forage and turf breeding. In C. Huyghe (Ed.), Domestication of new Mediterranean annual pasture legumes (pp. 137–141). Springer Science + Business Media B.V.Google Scholar
  49. Nkonki, T. (2013). A taxonomic study of the genus Lessertia DC. (Fabaceae, Galeheae). M.Sc. Thesis, University of Johannesburg, South Africa.Google Scholar
  50. Nkonki, T., Glen, H. F., Swelankomo, N., Jordaan, M., Germishuizen, G., & Moteetee, A. (2003). Fabaceae. In G. Germishuizen & N. L. Meyer (Eds.), Plants of southern Africa: an annotated checklist, Strelitzia 14 (pp. 472–559). Pretoria: South African National Biodiversity Institute.Google Scholar
  51. Nowack, M. K., Ungru, A., Bjerkan, K. N., Grini, P. E., & Schnittger, A. (2010). Reproductive cross-talk: seed development in flowering plants. Biochemical Society Transactions, 38(604), 612.Google Scholar
  52. Palmer, A., & Ainslie, A. (2006). Country pasture/forage resource profiles. South Africa: FAO.Google Scholar
  53. Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., de Vos, A. C., Buchmann, N., Funes, G., Quetier, A. F., Hodgson, J. G., Thompson, K., Morgan, H. D., ter Steege, H., van der Heijden, M. G. A., Sack, L., Blonder, B., Poschlod, P., Vaieretti, V., Conti, G., Staver, A. C., Aquino, S., & Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167–234.CrossRefGoogle Scholar
  54. Rao, I., Peters, M., Castro, A., Schulze-Kraft, R., White, D., Fisher, M., Miles, J., Lascano, C., Blümmel, M., Bungenstab, D., Tapasco, J., Hayman, G., Bolliger, A., Paul, B., van der Hoek, R., Maass, B., Tiemann, T., Cuchillo, M., Douxchamps, S., Villanueva, C., Rincon, A., Ayarza, M., Rosenstock, T., Sabbarao, G., Arango, J., Cardoso, J., Worthington, M., Chirinda, N., Notenbaert, A., Janet, A., Schmidt, A., Vivas, N., Lefroy, R., Fahrney, K., Guimaraes, E., Thome, J., Cook, S., Herrero, M., Chocon, M., Searchinger, T., & Rudel, T. (2015). LivestockPlus—the sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Tropical Grasslands.  https://doi.org/10.17138/TGFT (3).
  55. Rufino, M. C., Thornton, P. K., Ng’ang’a, S. K., Mutie, I., Jones, P. G., van Wijka, M. T., & Herrero, M. (2013). Transitions in agro-pastoralist systems of East Africa: impacts on food security and poverty. Agriculture, Ecosystems and Environment, 179, 215–230.CrossRefGoogle Scholar
  56. Samuels, I., Cupido, C., Swarts, M. B., Palmer, A. R., & Paulse, J. W. (2015). Feeding ecology of four livestock species under different management in a semi-arid pastoral system in South Africa. African Journal of Range and Forage Science.  https://doi.org/10.2989/10220119.2015.1029972.
  57. Schutte, A. L. (2012). Plants of the greater cape floristic region. 1: the Core Cape Flora (pp. 518–582). Strelitzia 29. In J. Manning & P. Goldblatt (Eds.), Fabaceae. Pretoria: South African National Biodiversity Institute.Google Scholar
  58. Scott, P. (2000). Resurrection plants and the secrets of eternal leaf. Annals of Botany, 85, 159–166.CrossRefGoogle Scholar
  59. Silvestri, S., Bryan, E., Ringler, C., Herrero, M., & Okoba, B. (2012). Climate change perception and adaptation of agro-pastoral communities in Kenya. Regional Environmental Change, 12, 791–802.CrossRefGoogle Scholar
  60. Sinclair, T. R., & Ludlow, M. M. (1985). Who taught plants thermodynamics? The unfulfilled potential of plant water potential. Australian Journal of Plant Physiology, 12, 213–217.CrossRefGoogle Scholar
  61. Skerman, P. J. (1982). Tropical forage legumes. Food and Agricultural Organization: Rome.Google Scholar
  62. Smýkal, P., Vernoud, V., Blair, M. W., Soukup, A., & Thompson, R. D. (2014). The role of the testa during development and in establishment of dormancy of the legume seed. Frontiers in Plant Science, 5.  https://doi.org/10.3389/fpls.2014.00351.
  63. Snowball, R., Mahdere, A., Tesday, E., Aberra, M., Carr, R. M., & Antuono, M. F. D. (2013). Exploring the wider potential of forage legumes collected from the highlands of Eritrea. Plant Genetic Resources: Characterization and Utilization, 11, 158–169.CrossRefGoogle Scholar
  64. Thornton, P. K., & Herrero, M. (2014). Climate change adaptation in mixed crop-livestock systems in developing countries. Global Food Security, 3, 99–107.CrossRefGoogle Scholar
  65. Thornton, P. K., & Herrero, M. (2015). Adapting to climate change in the mixed crop and livestock farming systems in sub-Saharan Africa. Nature Climate Change, 5, 830–836.CrossRefGoogle Scholar
  66. Thornton, P. K., Herrero, M., Freeman, H. A., Mwai, A. O., Rege, E., Jones, P. G., & McDermott, J. (2007). Vulnerability, climate change and livestock- opportunities and challenges for the poor. Journal of Semi-Arid Tropics Agricultural Research, 4, 1–23.Google Scholar
  67. Thornton, P. K., van de Steeg, J., Notenbaert, A., & Herrero, M. (2009). The impacts of climate change on livestock and livestock systems in developing countries: a review of what we know and what we need to know. Agricultural Systems, 101, 113–127.CrossRefGoogle Scholar
  68. Truter, W. F., Botha, P. R., Dannhauser, C. S., Maasdorp, B. V., Miles, N., Smith, A., Snyman, H. A., & Tainton, N. M. (2015). South African pasture and forage science entering the 21st century: past to present. South African Journal of Range and Forage Science, 32, 73–89.CrossRefGoogle Scholar
  69. Trytsman, M. (2013). Diversity and pasture potential of legumes indigenous to southern Africa. PhD thesis, University of Pretoria, South Africa.Google Scholar
  70. Trytsman, M., Westfall, R. H., Brytenbach, P. J. J., Calitz, F. J., & van Wyk, A. E. (2016). Diversity and biogeography pattern of legumes (Leguminosae) indigenous to southern Africa. PhytoKeys, 70, 53–96.CrossRefGoogle Scholar
  71. Werker, E., Marbach, I., & Mayer, A. M. (1979). Relation between the anatomy of the testa, water permeability and the presence of phenolics in the genus Pisum. Annals of Botany, 43, 765–771.CrossRefGoogle Scholar
  72. Whalley, R. D. B., & Davidson, A. A. (1969). Drought dormancy in Astrebla lappacea, Chloris acicularis, and Stipa aristiglumis. Australian Journal of Agricultural Research, 20, 1035–1042.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Francuois L. Müller
    • 1
    • 2
    Email author
  • Lincoln M. Raitt
    • 1
  • Samson B. M. Chimphango
    • 3
  • M. Igshaan Samuels
    • 2
  • Clement F. Cupido
    • 2
  • J. Stephen Boatwright
    • 1
  • Richard Knight
    • 1
    • 4
  • Marike Trytsman
    • 5
  1. 1.Department of Biodiversity and Conservation BiologyUniversity of the Western CapeBellvilleSouth Africa
  2. 2.Agricultural Research Council – Animal Production InstituteUniversity of the Western CapeBellvilleSouth Africa
  3. 3.Department of Biological SciencesUniversity of Cape TownRondeboschSouth Africa
  4. 4.DST-NRF Centre of Excellence in Food SecurityUniversity of the Western CapeBellvilleSouth Africa
  5. 5.Agricultural Research Council – Animal Production InstituteIreneSouth Africa

Personalised recommendations