Skip to main content
Log in

Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Digital soil mapping has been introduced as a viable alternative to the traditional mapping methods due to being fast and cost-effective. The objective of the present study was to investigate the capability of the vegetation features and spectral indices as auxiliary variables in digital soil mapping models to predict soil properties. A region with an area of 1225 ha located in Bajgiran rangelands, Khorasan Razavi province, northeastern Iran, was chosen. A total of 137 sampling sites, each containing 3–5 plots with 10-m interval distance along a transect established based on randomized-systematic method, were investigated. In each plot, plant species names and numbers as well as vegetation cover percentage (VCP) were recorded, and finally one composite soil sample was taken from each transect at each site (137 soil samples in total). Terrain attributes were derived from a digital elevation model, different bands and spectral indices were obtained from the Landsat7 ETM+ images, and vegetation features were calculated in the plots, all of which were used as auxiliary variables to predict soil properties using artificial neural network, gene expression programming, and multivariate linear regression models. According to R 2 RMSE and MBE values, artificial neutral network was obtained as the most accurate soil properties prediction function used in scorpan model. Vegetation features and indices were more effective than remotely sensed data and terrain attributes in predicting soil properties including calcium carbonate equivalent, clay, bulk density, total nitrogen, carbon, sand, silt, and saturated moisture capacity. It was also shown that vegetation indices including NDVI, SAVI, MSAVI, SARVI, RDVI, and DVI were more effective in estimating the majority of soil properties compared to separate bands and even some soil spectral indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbadi, G. A., & El-Sheikh, M. A. (2002). Vegetation analysis of Failaka island (Kuwait). Journal of Arid Environments, 50(1), 153–165.

    Article  Google Scholar 

  • Abdul-Wahab, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling and Software, 20(10), 1263–1271.

    Article  Google Scholar 

  • Aitkenhead, M. J., & Coull, M. C. (2016). Geoderma mapping soil carbon stocks across Scotland using a neural network model. Geoderma, 262, 187–198.

    Article  CAS  Google Scholar 

  • Akramkhanov, A., Martius, C., Park, S. J., & Hendrickx, J. M. H. (2011). Environmental factors of spatial distribution of soil salinity on flat irrigated terrain. Geoderma, 163(1), 55–62.

    Article  Google Scholar 

  • Al-Rowaily, S. L., El-Bana, M. I., & Al-Dujain, F. A. R. (2012). Changes in vegetation composition and diversity in relation to morphometry, soil and grazing on a hyper-arid watershed in the central Saudi Arabia. Catena, 97, 41–49.

    Article  Google Scholar 

  • Amini, M., Abbaspour, K. C., Khademi, H., Fathianpour, N., Afyuni, M., & Schulin, R. (2005). Neural network models to predict cation exchange capacity in arid regions of Iran. European Journal of Soil Science, 56(4), 551–559.

    Article  CAS  Google Scholar 

  • Andrews, S. S., Mitchell, J. P., Mancinelli, R., Karlen, D. L., Hartz, T. K., Horwath, W. R., et al. (2002). On-farm assessment of soil quality in California’s central valley. Agronomy Journal, 94(1), 12–23.

    Article  Google Scholar 

  • Ares, M. G., Varni, M., & Chagas, C. (2016). Suspended sediment concentration controlling factors: an analysis for the argentine pampas region. Hydrological Sciences Journal, 61(12), 2237–2248.

    Article  CAS  Google Scholar 

  • Bodaghabadi, M. B., Martinez-Casasnovas, J., Salehi, M. H., Mohammadi, J., Borujeni, I. E., Toomanian, N., & Gandomkar, A. (2015). Digital soil mapping using artificial neural networks and terrain-related attributes. Pedosphere, 25(4), 580–591.

    Article  Google Scholar 

  • Ballabio, C., Fava, F., & Rosenmund, A. (2012). Geoderma A plant ecology approach to digital soil mapping, improving the prediction of soil organic carbon content in alpine grasslands. Geoderma, 187-188, 102–116.

    Article  CAS  Google Scholar 

  • Banimahd, M., Yasrobi, S. S., & Woodward, P. K. (2005). Artificial neural network for stress–strain behavior of sandy soils: Knowledge based verification. Computers and Geotechnics, 32(5), 377–386.

    Article  Google Scholar 

  • Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120.

    Article  Google Scholar 

  • Başaran, M., Erpul, G., Tercan, A. E., & Canga, M. R. (2008). The effects of land use changes on some soil properties in Indaği Mountain Pass—Cankiri, Turkey. Environmental Monitoring and Assessment, 136(1–3), 101–119.

    Google Scholar 

  • Bilgili, A. V. (2013). Spatial assessment of soil salinity in the Harran Plain using multiple kriging techniques. Environmental Monitoring and Assessment, 185(1), 777–795.

    Article  CAS  Google Scholar 

  • Boettinger, J. L., Ramsey, R. D., Bodily, J. M., Cole, N. J., Kienast-Brown, S., Nield, S. J., et al. (2008). Landsat spectral data for digital soil mapping. In A. E., Hartemink, A., McBratney, & M. D. Mendonça-Santos (Eds.), Digital Soil Mapping with limited data (pp. 193–202). Dordrecht: Springer.

  • Bouaziz, M., Matschullat, J., & Gloaguen, R. (2011). Improved remote sensing detection of soil salinity from a semi-arid climate in Northeast Brazil. Comptes Rendus Geoscience, 343(11), 795–803.

    Article  Google Scholar 

  • Brasher, B. R., Franzmeier, D. P., Valassis, V., & Davidson, S. E. (1966). Use of saran resin to coat natural soil clods for bulk-density and water-retention measurements. Soil Science, 101(2), 108.

    Article  Google Scholar 

  • Brubaker, S. C., Jones, A. J., Lewis, D. T., & Frank, K. (1993). Soil properties associated with landscape position. Soil Science Society of America Journal, 57(1), 235–239.

    Article  Google Scholar 

  • Cadaret, E. M., McGwire, K. C., Nouwakpo, S. K., Weltz, M. A., & Saito, L. (2016). Vegetation canopy cover effects on sediment erosion processes in the Upper Colorado River Basin Mancos Shale formation, Price, Utah, USA. Catena, 147, 334–344.

    Article  Google Scholar 

  • Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing. 5th edition. New York: Guilford Press.

  • Carter, M. R., & Gregorich, E. G. (1993). Soil sampling and methods of analysis. 2th edition. Boca Raton: CRC Press, Taylor and Francis Group.

  • Cerda, A. (1996). Soil aggregate stability in three Mediterranean environments. Soil Technology, 9(3), 133–140.

    Article  Google Scholar 

  • Coops, N. C., Waring, R. H., & Hilker, T. (2012). Remote sensing of environment prediction of soil properties using a process-based forest growth model to match satellite-derived estimates of leaf area index. Remote Sensing of Environment, 126, 160–173.

    Article  Google Scholar 

  • Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3), 271–278.

    Article  Google Scholar 

  • De Paul Obade, V., & Lal, R. (2013). Assessing land cover and soil quality by remote sensing and geographical information systems (GIS). Catena, 104, 77–92.

    Article  Google Scholar 

  • Ding, J., Fan, L., Cao, Y., Liu, M., Ma, J., Li, Y., & Tang, L. (2016). Spatial distribution of the herbaceous layer and its relationship to soil physical–chemical properties in the southern margin of the Gurbantonggut Desert, northwestern China. Acta Ecologica Sinica, 36(5), 327–332.

    Article  Google Scholar 

  • Emamgolizadeh, S., Bateni, S. M., Shahsavani, D., Ashrafi, T., & Ghorbani, H. (2015). Estimation of soil cation exchange capacity using genetic expression programming ( GEP ) and multivariate adaptive regression splines. Journal of Hydrology, 529, 1590–1600.

    Article  CAS  Google Scholar 

  • Fernández-Buces, N., Siebe, C., Cram, S., & Palacio, J. L. (2006). Mapping soil salinity using a combined spectral response index for bare soil and vegetation: a case study in the former lake Texcoco, Mexico. Journal of Arid Environments, 65(4), 644–667.

    Article  Google Scholar 

  • Franceschini, M. H. D. H. D., Demattê, J. A. M. A. M., da Silva Terra, F., Vicente, L. E. E., Bartholomeus, H., & de Souza Filho, C. R. R. (2015). Prediction of soil properties using imaging spectroscopy: considering fractional vegetation cover to improve accuracy. International Journal of Applied Earth Observation and Geoinformation, 38, 358–370.

    Article  Google Scholar 

  • Gevrey, M., Dimopoulos, I., & Lek, S. (2006). Two-way interaction of input variables in the sensitivity analysis of neural network models. Ecological Modelling, 195(1), 43–50.

    Article  Google Scholar 

  • Gilabert, M. A., González-Piqueras, J., García-Haro, F. J., & Meliá, J. (2002). A generalized soil-adjusted vegetation index. Remote Sensing of Environment, 82(2–3), 303–310.

    Article  Google Scholar 

  • Gitelson, A. A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18(12), 2691–2697.

    Article  Google Scholar 

  • Haykins, S. (1994). Neural networks: a comprehensive foundation. New York: MacMillan http://www.earthexplorer.usgs.gov.

    Google Scholar 

  • Huang, Y., Lan, Y., Thomson, S. J., Fang, A., Hoffmann, W. C., & Lacey, R. E. (2010). Development of soft computing and applications in agricultural and biological engineering. Computers and Electronics in Agriculture, 71(2), 107–127.

    Article  Google Scholar 

  • Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  • Jafari, M., Chahouki, M. A. Z., Tavili, A., Azarnivand, H., & Amiri, G. Z. (2004). Effective environmental factors in the distribution of vegetation types in Poshtkouh rangelands of Yazd Province (Iran). Journal of Arid Environments, 56(4), 627–641.

    Article  Google Scholar 

  • Lakshmi, V., James, J., & Kasinatha Pandian, P. (2015). A comparison of soil texture distribution and soil moisture mapping of Chennai coast using Landsat ETM + and IKONOS data. Aquatic Procedia, 4(Icwrcoe), 1452–1460.

    Article  Google Scholar 

  • Leonard, S. G., Miles, R. L., & Tueller, P. T. (1988). Vegetation-soil relationships on arid and semiarid rangelands. In P. T., Tueler (Ed.), Vegetation science applications for rangeland analysis and management (pp. 225–252). Netherlands: Springer.

  • Li, Y. Y., Dong, S. K., Liu, S., Wang, X., Wen, L., & Wu, Y. (2014). The interaction between poisonous plants and soil quality in response to grassland degradation in the alpine region of the Qinghai-Tibetan Plateau. Plant Ecology, 215(8), 809–819.

    Article  Google Scholar 

  • Liu, Z. Y., Huang, J. F., Wu, X. H., & Dong, Y. P. (2007). Comparison of vegetation indices and red-edge parameters for estimating grassland cover from canopy reflectance data. Journal of Integrative Plant Biology, 49(3), 299–306.

    Article  Google Scholar 

  • Lu, T., Ma, K. M., Zhang, W. H., & Fu, B. J. (2006). Differential responses of shrubs and herbs present at the Upper Minjiang River basin (Tibetan Plateau) to several soil variables. Journal of Arid Environments, 67(3), 373–390.

    Article  Google Scholar 

  • Magurran, A. E. (2013). Measuring biological diversity. Oxford: Blackwell Publishing Company.

  • Mahmoudabadi, E., Sarmadian, F., & Moghaddam, R. N. (2015). Spatial distribution of soil heavy metals in different land uses of an industrial area of Tehran (Iran). International journal of Environmental Science and Technology, 12(10), 3283–3298.

    Article  CAS  Google Scholar 

  • MathWorks. (2009). Matlab. The MathWorks, Inc., Natick, MA.

  • McBratney, A. B., Santos, M. L. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1), 3–52.

    Article  Google Scholar 

  • Medina, H., Jong, Q. D., Lier, V., García, J., & Elena, M. (2017). Soil & Tillage Research Regional-scale variability of soil properties in Western Cuba. Soil & Tillage Research, 166, 84–99.

    Article  Google Scholar 

  • Metternicht, G., & Zinck, J. A. (1997). Spatial discrimination of salt-and sodium-affected soil surfaces. International Journal of Remote Sensing, 18(12), 2571–2586.

    Article  Google Scholar 

  • Miao, Y., Mulla, D. J., & Robert, P. C. (2006). Identifying important factors influencing corn yield and grain quality variability using artificial neural networks. Precision Agriculture, 7(2), 117–135.

    Article  Google Scholar 

  • Michot, D., Walter, C., Adam, I., & Guéro, Y. (2013). Digital assessment of soil-salinity dynamics after a major flood in the Niger River valley. Geoderma, 207, 193–204.

    Article  Google Scholar 

  • Minasny, B., & Mcbratney, A. B. (2002). The Neuro-m method for fitting neural network parametric pedotransfer functions. Soil Science Society of America Journal, 66(4), 1407–a.

    Article  Google Scholar 

  • Minasny, B., McBratney, A. B., & Hartemink, A. E. (2010). Global pedodiversity, taxonomic distance, and the World Reference Base. Geoderma, 155(3), 132–139.

    Article  Google Scholar 

  • Mirzaee, S., Ghorbani-Dashtaki, S., Mohammadi, J., Asadi, H., & Asadzadeh, F. (2016). Spatial variability of soil organic matter using remote sensing data. Catena, 145, 118–127.

    Article  CAS  Google Scholar 

  • Moghimi, S., Parvizi, Y., & Mahdian, M. H. (2015). Comparison of applying multi linear regression analysis and artificial neural network methods for simulating topographic factors effect on soil organic carbon. Watershed Engineering and Management, 6(4), 312–322.

    Google Scholar 

  • Mosleh, Z., Salehi, M. H., Jafari, A., Borujeni, I. E., & Mehnatkesh, A. (2016). The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoring and Assessment, 188(3), 195.

    Article  Google Scholar 

  • National Cartographic Center. (2010). Research Institute of NCC, Tehran, Iran (www.ncc.org.ir).

  • Pansu, M., & Gautheyrou, J. (2007). Handbook of soil analysis: mineralogical, organic and inorganic methods. Netherlands: Springer.

  • Parvizi, Y., Gorji, M., Omid, M., Mahdian, M. H., & Amini, M. (2010). Determination of soil organic carbon variability of rainfed crop land in semi-arid region (neural network approach). Modern Applied Science, 4(7), 25.

    Article  CAS  Google Scholar 

  • Pierson, F. B., & Mulla, D. J. (1990). Aggregate stability in the Palouse region of Washington: Effect of landscape position. Soil Science Society of America Journal, 54(5), 1407–1412.

    Article  CAS  Google Scholar 

  • Pilevar, S. A. R., Ayoubi, S., & Khademi, H. (2011). Comparison of artificial neural network (ANN) and multivariate linear regression (MLR) models to predict soil organic carbon using digital terrain analysis (Case Study: Zargham Abad Semirom, Isfahan Proviance). Journal of Water and Soil, 24(6), 1151–1163.

    Google Scholar 

  • Priori, S., Bianconi, N., & Costantini, E. A. C. (2014). Can γ-radiometrics predict soil textural data and stoniness in different parent materials? A comparison of two machine-learning methods. Geoderma, 226, 354–364.

    Article  Google Scholar 

  • Qian, Y., Wu, Z., Wang, Z., Yang, H., & Jiang, C. (2013). Relationship of spatial heterogeneity for vegetation and aeolian sand soil properties on longitudinal dunes in Gurbantunggut Desert, China. Environmental Earth Sciences, 69(6), 2027–2036.

    Article  Google Scholar 

  • Ramifehiarivo, N., Brossard, M., Grinand, C., Andriamananjara, A., Razafimbelo, T., Rasolohery, A., Razafimahatratra, H., Seyler, F., Ranaivoson, N., Rabenarivo, M., & Albrecht, A. (2017). Mapping soil organic carbon on a national scale: towards an improved and updated map of Madagascar. Geoderma Regional, 9, 29–38.

    Article  Google Scholar 

  • Ratnayake, R. R., Karunaratne, S. B., Lessels, J. S., Yogenthiran, N., Rajapaksha, R. P. S. K., & Gnanavelrajah, N. (2016). Geoderma regional digital soil mapping of organic carbon concentration in paddy growing soils of northern Sri Lanka. GEODRS, 7(2), 167–176.

    Google Scholar 

  • Ren, G., Shang, Z., Long, R., Hou, Y., & Deng, B. (2013). The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau, China. Environmental Earth Sciences, 69(1), 235–245.

    Article  Google Scholar 

  • Ripley, B. D. (2007). Pattern recognition and neural networks. Cambridge, New York: Cambridge University Press.

    Google Scholar 

  • Rivero, R. G., Grunwald, S., Binford, M. W., & Osborne, T. Z. (2009). Integrating spectral indices into prediction models of soil phosphorus in a subtropical wetland. Remote Sensing of Environment, 113(11), 2389–2402.

    Article  Google Scholar 

  • Rizzo, R., Demattê, J. A. M., Lepsch, I. F., Gallo, B. C., & Fongaro, C. T. (2016). Geoderma digital soil mapping at local scale using a multi-depth Vis–NIR spectral library and terrain attributes. Geoderma, 274, 18–27.

    Article  Google Scholar 

  • Rossi, J., Govaerts, A., De Vos, B., Verbist, B., Vervoort, A., Poesen, J., et al. (2009). Spatial structures of soil organic carbon in tropical forests—a case study of Southeastern Tanzania. Catena, 77(1), 19–27.

    Article  CAS  Google Scholar 

  • Rossiter, D. (2005). Digital soil mapping: towards a multiple-use soil information system. Análisis Geográficos (Revista del Instituto Geográfico“ Augusín Codazzi”), 32(1), 7–15.

    Google Scholar 

  • Santra, P., Kumar, M., & Panwar, N. (2017). Digital soil mapping of sand content in arid western India through geostatistical approaches. Geoderma Regional, 9, 56–72.

    Article  Google Scholar 

  • Scudiero, E., Skaggs, T. H., & Corwin, D. L. (2015). Remote sensing of environment regional-scale soil salinity assessment using Landsat ETM + canopy re flectance. Remote Sensing of Environment, 169, 335–343.

    Article  Google Scholar 

  • Shi, W., Liu, J., Du, Z., Stein, A., & Yue, T. (2011). Surface modelling of soil properties based on land use information. Geoderma, 162(3–4), 347–357.

    Article  CAS  Google Scholar 

  • Somaratne, S., Seneviratne, G., & Coomaraswamy, U. (2005). Prediction of soil organic carbon across different land-use patterns. Soil Science Society of America Journal, 69(5), 1580–1589.

    Article  CAS  Google Scholar 

  • Streck, N. A., Rundquist, D., & Connot, J. (2003). Spectral signature of selected soils. Rev. Brasil. Agrometeorol., Santa Maria, 11(1), 184.

    Google Scholar 

  • Sumfleth, K., & Duttmann, R. (2008). Prediction of soil property distribution in paddy soil landscapes using terrain data and satellite information as indicators. Ecological Indicators, 8(5), 485–501.

    Article  Google Scholar 

  • Taborda, C., Oka-fiori, C., José, L., Santos, C., Evaristo, A., Ribeiro, C., & Faria, M. (2013). Geoderma soil prediction using artificial neural networks and topographic attributes. Geoderma, 195-196, 165–172.

    Article  Google Scholar 

  • Taghizadeh-mehrjardi, R. (2015). Archives of Agronomy and Soil Science Digital mapping of cation exchange capacity using genetic programming and soil depth functions in Baneh region, Iran, (May), 37–41.

  • Taghizadeh-mehrjardi, R., Ayoubi, S., Namazi, Z., Malone, B. P., Zolfaghari, A. A., & Roustaei Sadrabadi, F. (2016). Prediction of soil surface salinity in arid region of central Iran using auxiliary variables and genetic programming. Arid Land Research and Management, 30(1), 49–64.

  • Taghizadeh-mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, B. P. (2014). Geoderma digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15–28.

    Article  CAS  Google Scholar 

  • Taylor, J. A., Jacob, F., Galleguillos, M., Prévot, L., Guix, N., & Lagacherie, P. (2013). Geoderma The utility of remotely-sensed vegetative and terrain covariates at different spatial resolutions in modelling soil and watertable depth ( for digital soil mapping ). Geoderma, 193-194, 83–93.

    Article  Google Scholar 

  • Thomas, M., Clifford, D., Bartley, R., Philip, S., Brough, D., Gregory, L., et al. (2015). Geoderma putting regional digital soil mapping into practice in tropical northern Australia. Geoderma, 241-242, 145–157.

    Article  Google Scholar 

  • Vågen, T., Winowiecki, L. A., Tondoh, J. E., Desta, L. T., & Gumbricht, T. (2016). Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma, 263, 216–225.

  • Wander, M. M., & Bollero, G. A. (1999). Soil quality assessment of tillage impacts in Illinois. Soil Science Society of America Journal, 63(4), 961–971.

    Article  CAS  Google Scholar 

  • Wilding, L. P. (1985). Spatial variability: its documentation, accommodation and implication to soil surveys. In D. R. Nielsen & J. Bouma (Eds.), Soil spatial variability (pp. 166–194). Wageningen: Pudoc.

  • Wilson, J. P., & Gallant, J. C. (2000). Terrain analysis: principles and applications. New York: John Wiley & Sons, Inc.

  • Wuttichaikitcharoen, P., & Babel, M. (2014). Principal component and multiple regression analyses for the estimation of suspended sediment yield in Ungauged Basins of Northern Thailand. Water, 6(8), 2412–2435.

    Article  Google Scholar 

  • Xu, X. L., Ma, K. M., Fu, B. J., Song, C. J., & Liu, W. (2008). Relationships between vegetation and soil and topography in a dry warm river valley, SW China. Catena, 75(2), 138–145.

    Article  Google Scholar 

  • Yang, L., Chen, L., & Wei, W. (2015). Effects of vegetation restoration on the spatial distribution of soil moisture at the hillslope scale in semi-arid regions. Catena, 124, 138–146.

    Article  Google Scholar 

  • Zhao, W., Zhang, R., Huang, C., Wang, B., Cao, H., Koopal, L. K., & Tan, W. (2016). Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. Catena, 139, 191–198.

    Article  CAS  Google Scholar 

  • Zhu, A.-X. (1994). Soil pattern inference using GIS under fuzzy logic. Toronto: Ph.D. Thesis, Department of Geography, University of Toronto.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudabadi, E., Karimi, A., Haghnia, G.H. et al. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environ Monit Assess 189, 500 (2017). https://doi.org/10.1007/s10661-017-6197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6197-7

Keywords

Navigation