Skip to main content

Advertisement

Log in

Debris flow-induced topographic changes: effects of recurrent debris flow initiation

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters’ mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Academia Sinica (2003). The introduction and applications of digital elevation models, GETA: a grid-based program for estimating terrain attributes V1.0, operation manual. Available at: http://webgis.sinica.edu.tw/ies/.

  • Adegbe, M., Alkema, D., Jetten, V. G., Agbor, A. T., Abdullahi, I. N., Shehu, O. U., & Unubi, A. S. (2013). Post seismic debris flow modelling using Flo-2d: case study of Yingxiu, Sichuan Province, China. Journal of Geography and Geology, 5, 101–115.

    Article  Google Scholar 

  • Beguería, S., Van Asch, T. W. J., Malet, J. P., & Gröndahl, S. (2009). A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain. Natural Hazards and Earth System Science, 9, 1897–1909.

    Article  Google Scholar 

  • Bell, R., Jaboyedoff, M., & Glade, T. (2005). Detecting landslide location and volume for hazard assessments using DTM analysis in the Swabian Alb, Germany. Geophysical Research Abstracts, 7, 06820.

    Google Scholar 

  • Bertolo, P., & Wieczorek, G. F. (2005). Calibration of numerical models for small debris flows in Yosemite Valley, California, USA. Natural Hazards and Earth System Sciences, 5, 993–1001.

    Article  Google Scholar 

  • Blahůt, J., Dušánek, P., & Klimeš, J. (2011). Application of high resolution DTM for the analysis of morphology of a deep seated gravitational slope deformation Čeřeniště. Geoscience Research Reports, 63–65.

  • Bollschweiler, M., & Stoffel, M. (2010). Variations in debris-flow occurrence in an alpine catchment—a reconstruction based on tree rings. Global and Planetary Change, 73, 186–192.

    Article  Google Scholar 

  • Bossi, G., Cavalli, M., Crema, S., Frigerio, S., Luna, B. Q., Mantovani, M., Marcato, G., Schenato, L., & Pasuto, A. (2015). Multi-temporal LiDAR-DTMs as a tool for modelling a complex landslide: a case study in the Rotolon catchment (eastern Italian Alps). Natural Hazards and Earth System Sciences, 15, 715–722.

    Article  Google Scholar 

  • Četina, M., Rajar, R., Hojnik, T., Zakrajšek, M., Krzyk, M., & Mikoš, M. (2006). Case study: numerical simulations of debris flow below Stože, Slovenia. Journal of Hydraulic Engineering, 132-2, 121–130.

    Google Scholar 

  • Chen, C. Y. (2016). Landslide characteristics under extreme rainfall conditions after typhoon Morakot in Taiwan. Landslides, 13, 153–164.

    Article  Google Scholar 

  • Chen, C. Y., & Yu, F. C. (2011). Morphometric analysis of debris flows and their source areas using GIS. Geomorphology, 129, 387–397.

    Article  Google Scholar 

  • Chen, C. Y., Chen, T. C., Yu, F. C., & Hung, F. Y. (2004). A landslide dam breach induced debris flow-a case study on downstream hazard areas delineation. Environmental Geology, 47, 91–101.

    Article  Google Scholar 

  • Chen, C. Y., Chen, T. C., Yu, F. C., & Lin, S. C. (2005). Analysis of time-varying rainfall infiltration induced landslide. Environmental Geology, 48, 466–479.

    Article  Google Scholar 

  • Chen, C. Y., Yu, F. C., Lin, S. C., & Cheung, K. W. (2007). Discussion of landslide self-organized criticality and the initiation of debris flow. Earth Surface Processes and Landforms, 32, 197–209.

    Article  Google Scholar 

  • Chen, Z., Zhang, B., Han, Y., Zuo, Z., & Zhang, X. (2014). Modeling accumulated volume of landslides using remote sensing and DTM data. Remote Sensing, 6, 1514–1537.

    Article  Google Scholar 

  • D’Ambrosio, D., Di Gregorio, S., & Iovine, G. (2003). Simulating debris flows through a hexagonal cellular automata model: SCIDDICA S3–hex. Natural Hazards and Earth System Sciences, 3, 545–559.

    Article  Google Scholar 

  • Dewitte, O., Jasselette, J. C., Cornet, Y., Van Den Eeckhaut, M., Collignon, A., Poesen, J., & Demoulin, A. (2008). Tracking landslide displacements by multi-temporal DTMs: a combined aerial stereophotogrammetric and LIDAR approach in western Belgium. Engineering Geology, 99, 11–22.

    Article  Google Scholar 

  • Gao, L., Zhang L. M., & Chen, H. X. (2015). Preliminary assessment of debris flow hazard in a catchment under extreme condition. Schweckendiek, T. et al. (Eds.), Geotechnical Safety and Risk V, 540–544.

  • Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., & Stoffel, M. (2014). 21st century climate change in the European Alps—a review. Science of the Total Environment, 493, 1138–1151.

    Article  CAS  Google Scholar 

  • He, S., Liu, W., Ouyang, C., & Li, X. (2014). A two-phase model for numerical simulation of debris flows. Natural Hazards and Earth System Sciences, 2, 2151–2183.

    Google Scholar 

  • Hsieh, Y. C., Chan, Y. C., & Hu, J. C. (2016). Digital elevation model differencing and error estimation from multiple sources: a case study from the Meiyuan Shan landslide in Taiwan. Remote Sensing, 8, 199. doi:10.3390/rs8030199.

    Article  Google Scholar 

  • Hsu, S. M., Chiou, L. B., Lin, G. F., Chao, C. H., Wen, H. Y., & Ku, C. Y. (2010). Applications of simulation technique on debris-flow hazard zone delineation: a case study in Hualien County, Taiwan. Natural Hazards and Earth System Sciences, 10, 535–545.

    Article  Google Scholar 

  • Hu, B., Wu, A. Q., Gong, B. W., & Lu, B. (2012). Numerical simulation of landslide turning into debris flows using discontinuous deformation analysis method. In T. Sasaki (Ed.), Advances in discontinuous numerical methods and applications in geomechanics and geoengineering (pp. 113–118). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Hürlimann, M., Rickenmann, D., & Graf, C. (2003). Field and monitoring data of debrisflow events in the Swiss Alps. Canadian Geotechnical Journal, 40, 161–175.

    Article  Google Scholar 

  • Hussin, H. Y., Quan Luna, B., van Westen, C. J., Christen, M., Malet, J.-P., & van Asch, T. W. J. (2012). Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Natural Hazards and Earth System Sciences, 12, 3075–3090.

    Article  Google Scholar 

  • Jakob, M., Anderson, D., Fuller, T., Hungr, O., & Ayotte, D. (2000). An unusually large debris flow at Hummingbird Creek, Mara Lake, British Columbia. Canadian Geotechnical Journal, 37, 1109–1125.

    Article  Google Scholar 

  • Jan, C. D., & Chen, J. C. (1997). Application of a vertically rotating flume to study the flow behavior of sediments. Journal of Chinese Soil and Water Conservation, 28, 157–164 (in Chinese with English abstract).

    Google Scholar 

  • Ku, C. Y., Yang, H. C., & Hsu, S. M. (2010). Numerical modeling of granular debris flow using discontinuous approach. In The twentieth international offshore and polar engineering conference, 20–25 June. Beijing: International Society of Offshore and Polar Engineers.

    Google Scholar 

  • Li, M. H., Sung, R. T., Dong, J. J., Lee, C. T., & Chen, C. C. (2011). The formation and breaching of a short-lived landslide dam at Hsiaolin Village, Taiwan—Part II: simulation of debris flow with landslide dam breach. Engineering Geology, 123, 60–71.

    Article  Google Scholar 

  • Lin, C. W., Shieh, C. L., Yuan, B. D., Shieh, Y. C., Liu, S. H., & Lee, S. Y. (2003). Impact of Chi-chi earthquake on the occurrence of landslides and debris flows: example from the Chenyulan River watershed, Nantou, Taiwan. Engineering Geology, 71, 49–61.

    Article  Google Scholar 

  • Lin, M. L., Wang, K. L., & Huang, J. J. (2005). Debris flow run off simulation and verification—case study of Chen-You-Lan watershed, Taiwan. Natural Hazards and Earth System Sciences, 5, 439–445.

    Article  Google Scholar 

  • Lin, P. S., Lee, J. H., & Chang, C. W. (2011a). An application of the Flo-2d model to debris-flow simulation—a case study of Song-Her District in Taiwan. Italian Journal of Engineering Geology and Environment, 947–956.

  • Lin, J. Y., Yang, M. D., Lin, B. R., & Lin, P. S. (2011b). Risk assessment of debris flows in Songhe Stream, Taiwan. Environmental Geology, 123, 100–112.

    Article  Google Scholar 

  • Liu, C., Hu, M., Lu, P., Li, W., Scaioni, M., Wu, H., Huang, Y., & Ye, B. (2016). Assessment of regional shallow landslide stability based on airborne laser scanning data in the Yingxiu area of Sichuan Province (China). European Journal of Remote Sensing, 49, 835–860.

    Article  Google Scholar 

  • Nefeslioglu, H. A., Duman, T. Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94, 401–418.

    Article  Google Scholar 

  • Nikolaeva, E., Walter, T. R., Shirzaei, M., & Zschau, J. (2014). Landslide observation and volume estimation in central Georgia based on L-band InSAR. Natural Hazards and Earth System Sciences, 14, 675–688.

    Article  Google Scholar 

  • O’Brien, J. D. (2006). FLO-2D user’s manual, version 2006.01. Nutrioso: FLO Engineering.

    Google Scholar 

  • O'Brien, J. S., & Julien, P. Y. (1988). Laboratory analysis of mudflow properties. Journal of Hydraulic Engineering, ASCE, 114, 877–887.

    Article  Google Scholar 

  • Petschko, H., Bell, R., & Glade, T. (2016). Effectiveness of visually analyzing LiDAR DTM derivatives for earth and debris slide inventory mapping for statistical susceptibility modeling. Landslides, 13, 857–872.

    Article  Google Scholar 

  • Pirulli, M., & Sorbino, G. (2008). Assessing potential debris flow runout: a comparison of two simulation models. Natural Hazards and Earth System Sciences, 8, 961–971.

    Article  Google Scholar 

  • Portilla, M., Chevalier, G., & Hürlimann, M. (2010). Description and analysis of the debris flows occurred during 2008 in the Eastern Pyrenees. Natural Hazards and Earth System Sciences, 10, 1635–1645.

    Article  Google Scholar 

  • Quan Luna, B., Blahut, J., van Westen, C. J., Sterlacchini, S., van Asch, T. W. J., & Akbas, S. O. (2011). The application of numerical debris flow modelling for the generation of physical vulnerability curves. Natural Hazards and Earth System Sciences, 11, 2047–2060.

    Article  Google Scholar 

  • Razak, K. A., Santangelo, M., van Westen, C. J., Straatsma, M. W., & de Jong, S. M. (2013). Generating an optimal DTM from airborne laser scanning data for landslide mapping in a tropical forest environment. Geomorphology, 190, 112–125.

    Article  Google Scholar 

  • Rickenmann, D. (2016). Debris-flow hazard assessment and methods applied in engineering practice. International Journal of Erosion Control Engineering, 9, 80–90.

    Article  Google Scholar 

  • Rickenmann, D., & Zimmermann, M. (1993). The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8, 175–189.

    Article  Google Scholar 

  • Scheidl, C., Rickenmann, D., & Chiari, M. (2008). The use of airborne LiDAR data for the analysis of debris flow events in Switzerland. Natural Hazards and Earth System Sciences, 8, 1113–1127.

    Article  Google Scholar 

  • Scott, K. M., Vallance, J. W., & Pringle, P. T. (1995). Sedimentology, behavior, and hazards of debris flows at Mount Rainier, Washington. U.S. Geological Survey, Open-File Report 90–385, 66 p.

  • Shieh, C. L., Chen, Y. S., Tsai, Y. J., & Wu, J. H. (2009). Variability in rainfall threshold for debris flow after the Chi-chi earthquake in central Taiwan. International Journal of Sediment Research, 24, 177–188.

    Article  Google Scholar 

  • Sitar, N., MacLaughlin, M. M., Doolin, D. M., & Abbot, T. (2001). Investigation of slope stability kinematics using discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Sciences, 38, 753–762.

    Article  Google Scholar 

  • Skinner, K. D. (2013). Post-fire debris-flow hazard assessment of the area burned by the 2013 beaver creek fire near Hailey, central Idaho. U.S. Geological Survey, Open-File Report 2013–1273, 12 p.

  • Stancanelli, L. M., & Foti, E. (2015). A comparative assessment of two different debris flow propagation approaches—blind simulations on a real debris flow event. Natural Hazards and Earth System Sciences, 15, 735–746.

    Article  Google Scholar 

  • Stevens, M. R., Flynn, J. L., Stephens, V. C., & Verdin, K. L. (2011). Estimated probabilities, volumes, and inundation areas depths of potential postwildfire debris flows from carbonate, slate, raspberry, and milton creeks, near Marble, Gunnison County, Colorado. U.S. Geological Survey, Scientific Investigations Report 2011–5047, 30 p.

  • Stoffel, M., Mendlik, T., Schneuwly-Bollschweiler, M., & Gobiet, A. (2014). Possible impacts of climate change on debris-flow activity in the Swiss Alps. Climatic Change, 122, 141–155.

    Article  Google Scholar 

  • Strahler, A. N. (1952). Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63, 1117–1141.

    Article  Google Scholar 

  • SWCB (2017). Soil and Water Conservation Bureau (SWCB) in Taiwan. https://246.swcb.gov.tw/V2016/.

  • Takahashi, T. (1981). Estimation of potential debris flows and their hazardous zones. Journal of Natural Disaster Science, 3, 57–89.

    Google Scholar 

  • Tsai, M. P., Hsu, Y. C., Li, H. C., Shu, H. M., & Liu, K. F. (2011). Application of simulation technique on debris flow hazard zone delineation: a case study in the Daniao tribe, Eastern Taiwan. Natural Hazards and Earth System Sciences, 11, 3053–3062.

    Article  Google Scholar 

  • Tseng, C. M., Lin, C. W., Stark, C. P., Liu, J. K., Fei, L. Y., & Hsieh, Y. C. (2013). Application of a multi-temporal, LiDAR-derived, digital terrain model in a landslide-volume estimation. Earth Surface Processes and Landforms, 38, 1587–1601.

    Google Scholar 

  • Wieczorek, G. F., Morgan, B. A., & Campbell, R. H. (2000). Debris-flow hazards in the blue ridge of central Virginia. Environmental and Engineering Geoscience, 6, 3–23.

    Article  Google Scholar 

  • Wieczorek, G. F., Eaton, L. S., Morgan, B. A., Wooten, R. M., & Morrissey, M. (2009). An examination of selected historical rainfall-induced debris-flow events within the central and southern Appalachian mountains of the Eastern United States. U.S. Geological Survey, Open-File Report 2009–1155, 25 p.

  • Willgoose, G., & Hancock, G. (1998). Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surface Processes and Landforms, 23, 611–623.

    Article  Google Scholar 

  • Wilson, J. P., & Gallant, J. C. (2000). Digital terrain analysis. In J. P. Wilson & J. C. Gallant (Eds.), Terrain analysis (pp. 1–27). New York: John Wiley & Sons.

    Google Scholar 

  • Wohl, H. E., & Pearthree, P. A. (1990). Controls on the origin and recurrence of debris flows in the Huachuca mountains, southeastern Arizona. Arizona Geological Survey, Open-File Report 906, 49 p.

  • Woolhiser, D. A. (1975). Simulation of unsteady overland flow. In K. Mahmood & V. Yevjevich (Eds.), Unsteady flow in open channels (pp. 485–508). Littleton: Water Resources Publication.

    Google Scholar 

  • Wu, J. H. (2007). Applying discontinuous deformation analysis to assess the constrained area of the unstable Chiu-fen-erh-shan landslide slope. International Journal for Numerical and Analytical Methods in Geomechanics, 31, 649–666.

    Article  Google Scholar 

  • Wu, J. H., Lin, J. S., & Chen, C. S. (2009). Dynamic discrete analysis of an earthquake-induced large scale landslide. International Journal of Rock Mechanics and Mining Sciences, 46, 397–407.

    Article  Google Scholar 

  • Wu, Y. H., Liu, K. F., & Chen, Y. C. (2013). Comparison between FLO-2D and debris-2D on the application of assessment of granular debris flow hazards with case study. Journal of Mountain Science, 2, 293–304.

    Article  Google Scholar 

  • Wu, J. H., Lin, W. K., & Hu, H. T. (2017). Assessing the impacts of a large slope failure using 3DEC: the Chiu-fen-erh-shan residual slope. Computers and Geotechnics, 88, 32–45.

    Article  Google Scholar 

  • Xu, Q., Zhang, S., Li, W. L., & van Asch, T. W. J. (2012). The 13 August 2010 catastrophic debris flows after the 2008 Wenchuan earthquake, China. Natural Hazards and Earth System Sciences, 12, 201–216.

    Article  CAS  Google Scholar 

  • Zhang, S., Zhang, L. M., & Chen, H. X. (2014). Relationships among three repeated large-scale debris flows at Pubugou Ravine in the Wenchuan earthquake zone. Canadian Geotechnical Journal, 51, 951–965.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express gratitude to the reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chien-Yuan Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CY., Wang, Q. Debris flow-induced topographic changes: effects of recurrent debris flow initiation. Environ Monit Assess 189, 449 (2017). https://doi.org/10.1007/s10661-017-6169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6169-y

Keywords

Navigation