Skip to main content
Log in

Methods of liquid phase microextraction for the determination of cadmium in environmental samples

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Liquid phase microextraction (LPME) has been widely used in extraction and preconcentration systems as an excellent alternative to conventional liquid phase extraction. In this work, a critical review is presented on liquid phase microextraction techniques used in the determination of cadmium in environmental samples. LPME techniques are classified into three main groups: single-drop liquid phase microextraction (SDME), hollow fiber liquid phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME). Methods involving these liquid phase microextraction techniques are described, addressing advantages and disadvantages, samples, figures of merit, and trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aghamohammadi, M., Faraji, M., Shahdousti, P., Kalhor, H., & Saleh, A. (2015). Trace determination of lead, chromium and cadmium in herbal medicines using ultrasound-assisted emulsification microextraction combined with graphite furnace atomic absorption spectrometry. Phytochemical Analysis, 26(3), 209–214.

    Article  CAS  Google Scholar 

  • Ahmad, W., Al-Sibaai, A., Bashammakh, A., Alwael, H., & El-Shahawi, M. (2015). Recent advances in dispersive liquid-liquid microextraction for pesticide analysis. TrAC Trends in Analytical Chemistry, 72, 181–192.

    Article  CAS  Google Scholar 

  • Almeida, J. S., Anunciação, T. A., Brandão, G. C., Dantas, A. F., Lemos, V. A., & Teixeira, L. S. G. (2015). Ultrasound-assisted single-drop microextraction for the determination of cadmium in vegetable oils using high-resolution continuum source electrothermal atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 107, 159–163.

    Article  CAS  Google Scholar 

  • Andruch, V., Balogh, I. S., Kocúrová, L., & Šandrejová, J. (2013). Five years of dispersive liquid–liquid microextraction. Applied Spectroscopy Reviews, 48(3), 161–259.

    Article  CAS  Google Scholar 

  • Anthemidis, A. N., & Adam, I. S. I. (2009). Development of on-line single-drop micro-extraction sequential injection system for electrothermal atomic absorption spectrometric determination of trace metals. Analytica Chimica Acta, 632(2), 216–220.

    Article  CAS  Google Scholar 

  • Arain, S. S., et al. (2015). Temperature-controlled ionic liquid-based ultrasound-assisted microextraction for preconcentration of trace quantity of cadmium and nickel by using organic ligand in artificial saliva extract of smokeless tobacco products. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 138, 387–394.

    Article  CAS  Google Scholar 

  • Arslan, O., Karadas, C., & Kara, D. (2016). Simultaneous Preconcentration of copper and cadmium by dispersive liquid liquid microextraction using N,N '-Bis (2-Hydroxy-5-Bromo-Benzy1)1,2 Diaminopropane and their determination by flame atomic absorption spectrometry. Journal of AOAC International, 99(5), 1356–1362.

    Article  CAS  Google Scholar 

  • Arthur, T., Harjani, J. R., Phan, L., Jessop, P. G., & Hodson, P. V. (2012). Effects-driven chemical design: the acute toxicity of CO2-triggered switchable surfactants to rainbow trout can be predicted from octanol-water partition coefficients. Green Chemistry, 14(2), 357–362.

    Article  CAS  Google Scholar 

  • Ataee, M., Ahmadi-Jouibari, T., & Fattahi, N. (2016). Application of microwave-assisted dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry for ultra-trace determination of lead and cadmium in cereals and agricultural products. International Journal of Environmental Analytical Chemistry, 96(3), 271–283.

    Article  CAS  Google Scholar 

  • Baroumand, N., Akbari, A., Shirani, M., & Shokri, Z. (2015). Homogeneous liquid-liquid microextraction via flotation assistance with thiol group chelating reagents for rapid and efficient determination of cadmium(II) and copper(II) ions in water samples. Water Air and Soil Pollution, 226(1), 8.

    Article  Google Scholar 

  • Behbahani, M., Esrafili, A., Bagheri, S., Radfar, S., Bojdi, M. K., & Bagheri, A. (2014). Modified nanoporous carbon as a novel sorbent before solvent-based de-emulsification dispersive liquid-liquid microextraction for ultra-trace detection of cadmium by flame atomic absorption spectrophotometry. Measurement, 51, 174–181.

    Article  Google Scholar 

  • Bello-López, M. Á., Ramos-Payán, M., Ocaña-González, J. A., Fernández-Torres, R., & Callejón-Mochón, M. (2012). Analytical applications of hollow fiber liquid phase microextraction (HF-LPME): a review. Analytical Letters, 45(8), 804–830.

    Article  Google Scholar 

  • Carletto, J. S., Luciano, R. M., Bedendo, G. C., & Carasek, E. (2009). Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry. Analytica Chimica Acta, 638(1), 45–50.

    Article  CAS  Google Scholar 

  • Chamsaz, M., Arbab-zavar, M. H., Riazi, M., & Takjoo, R. (2011). Determination of cadmium by electrothermal atomic absorption spectrometry using single drop micro extraction in real samples. Asian Journal of Chemistry, 23(2), 547.

    CAS  Google Scholar 

  • Chamsaz, M., Yazdi, A. S., & Dousti, F. (2013). Vortex-assisted ionic liquid microextraction coupled to graphite furnace atomic absorption spectrometry for preconcentration and determination of trace levels of cadmium in real samples. Asian Journal of Chemistry, 25(13), 7543.

    CAS  Google Scholar 

  • Chen, H., et al. (2014). Hollow fiber liquid-phase microextraction of cadmium(II) using an ionic liquid as the extractant. Microchimica Acta, 181(11–12), 1455–1461.

    Article  CAS  Google Scholar 

  • Dadfarnia, S., Salmanzadeh, A. M., & Shabani, A. M. H. (2008). A novel separation/preconcentration system based on solidification of floating organic drop microextraction for determination of lead by graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 623(2), 163–167.

    Article  CAS  Google Scholar 

  • Dadfarnia, S., Shabani, A. M. H., & Kamranzadeh, E. (2009). Separation/preconcentration and determination of cadmium ions by solidification of floating organic drop microextraction and FI-AAS. Talanta, 79(4), 1061–1065.

    Article  CAS  Google Scholar 

  • Fan, Z., & Zhou, W. (2006). Dithizone–chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(7), 870–874.

    Article  Google Scholar 

  • Greger, M., & Löfstedt, M. (2004). Comparison of uptake and distribution of cadmium in different cultivars of bread and durum wheat. Crop Science, 44(2), 501–507.

    Article  CAS  Google Scholar 

  • Hashemi, P., Raeisi, F., Ghiasvand, A. R., & Rahimi, A. (2010). Reversed-phase dispersive liquid-liquid microextraction with central composite design optimization for preconcentration and HPLC determination of oleuropein. Talanta, 80(5), 1926–1931.

    Article  CAS  Google Scholar 

  • Horstkotte, B., Suárez, R., Solich, P., & Cerdà, V. (2013). In-syringe-stirring: a novel approach for magnetic stirring-assisted dispersive liquid–liquid microextraction. Analytica Chimica Acta, 788, 52–60.

    Article  CAS  Google Scholar 

  • Hosseini, M. H., Rezaee, M., Mashayekhi, H. A., Akbarian, S., Mizani, F., & Pourjavid, M. R. (2012). Determination of polycyclic aromatic hydrocarbons in soil samples using flotation-assisted homogeneous liquid–liquid microextraction. Journal of Chromatography A, 1265, 52–56.

    Article  CAS  Google Scholar 

  • Hu, B., He, M., Chen, B., & Xia, L. (2013). Liquid phase microextraction for the analysis of trace elements and their speciation. Spectrochimica Acta Part B: Atomic Spectroscopy, 86, 14–30.

    Article  CAS  Google Scholar 

  • Jafarnejadi, A. R., Homaee, M., Sayyad, G., & Bybordi, M. (2011). Large scale spatial variability of accumulated cadmium in the wheat farm grains. Soil and Sediment Contamination, 20(1), 98–113.

    Article  CAS  Google Scholar 

  • Jafarvand, S., & Shemirani, F. (2011a). Supramolecular-based dispersive liquid-liquid microextraction: a novel sample preparation technique utilizes coacervates and reverse micelles. Journal of Separation Science, 34(4), 455–461.

    Article  CAS  Google Scholar 

  • Jafarvand, S., & Shemirani, F. (2011b). Supramolecular-based dispersive liquid-liquid microextraction: determination of cadmium in water and vegetable samples. Analytical Methods, 3(7), 1552–1559.

    Article  CAS  Google Scholar 

  • Jahromi, E. Z., Bidari, A., Assadi, Y., Hosseini, M. R. M., & Jamali, M. R. (2007). Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry—ultra trace determination of cadmium in water samples. Analytica Chimica Acta, 585(2), 305–311.

    Article  Google Scholar 

  • Jain, R., & Singh, R. (2016). Applications of dispersive liquid–liquid micro-extraction in forensic toxicology. TrAC Trends in Analytical Chemistry, 75, 227–237.

    Article  CAS  Google Scholar 

  • Jalbani, N., & Soylak, M. (2015). Determination of cadmium and lead in water and food by organic drop microextraction and flame atomic absorption spectrometry. Instrumentation Science & Technology, 43(5), 573–587.

    Article  CAS  Google Scholar 

  • Jessop, P. G., Heldebrant, D. J., Li, X. W., Eckert, C. A., & Liotta, C. L. (2005). Green chemistry—reversible nonpolar-to-polar solvent. Nature, 436(7054), 1102–1102.

    Article  CAS  Google Scholar 

  • de Jesus, A. M., Aguirre, M. Á., Hidalgo, M., Canals, A., & Pereira-Filho, E. R. (2014). The determination of V and mo by dispersive liquid–liquid microextraction (DLLME) combined with laserinduced breakdown spectroscopy (LIBS). Journal of Analytical Atomic Spectrometry, 29(10), 1813–1818.

    Article  Google Scholar 

  • Jia, X. Y., Han, Y., Liu, X. L., Duan, T. C., & Chen, H. T. (2010). Dispersive liquid-liquid microextraction combined with flow injection inductively coupled plasma mass spectrometry for simultaneous determination of cadmium, lead and bismuth in water samples. Microchimica Acta, 171(1–2), 49–56.

    Article  CAS  Google Scholar 

  • Jiang, H., & Hu, B. (2008). Determination of trace Cd and Pb in natural waters by direct single drop microextraction combined with electrothermal atomic absorption spectrometry. Microchimica Acta, 161(1–2), 101–107.

    Article  CAS  Google Scholar 

  • Kahe, H., Chamsaz, M., & Rounaghi, G. H. (2016). A microextraction method based on ligandless ion-pair formation for measuring the cadmium cation in real samples by flame atomic absorption spectrometry. Food Analytical Methods, 9(10), 2887–2895.

    Article  Google Scholar 

  • Karim-Nezhad, G., Ahmadi, M., & Zare-Dizajdizi, B. (2011). Background corrected dispersive liquid-liquid microextraction of cadmium combined with flame atomic absorption spectrometry. Journal of the Brazilian Chemical Society, 22(9), 1816–1822.

    Article  CAS  Google Scholar 

  • Khan, S., Soylak, M., & Kazi, T. G. (2013). A simple ligandless microextraction method based on ionic liquid for the determination of trace cadmium in water and biological samples. Toxicological and Environmental Chemistry, 95(7), 1069–1079.

    Article  CAS  Google Scholar 

  • Khan, S., Kazi, T. G., & Soylak, M. (2014a). Rapid ionic liquid-based ultrasound assisted dual magnetic microextraction to preconcentrate and separate cadmium-4-(2-thiazolylazo)-resorcinol complex from environmental and biological samples. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 123, 194–199.

    Article  CAS  Google Scholar 

  • Khan, S., Yilmaz, E., Kazi, T. G., & Soylak, M. (2014b). Vortex assisted liquid-liquid microextraction using Triton X-114 for ultratrace cadmium prior to analysis. Clean-Soil Air Water, 42(8), 1083–1088.

    Article  CAS  Google Scholar 

  • Khan, S., Kazi, T. G., & Soylak, M. (2015). Ionic liquid-based ultrasound-assisted emulsification microextraction of cadmium in biological samples: Optimization by a multivariate approach. Analytical Letters, 48(11), 1751–1766.

    Article  CAS  Google Scholar 

  • Lee, J., Lee, H. K., Rasmussen, K. E., & Pedersen-Bjergaard, S. (2008). Environmental and bioanalytical applications of hollow fiber membrane liquid-phase microextraction: a review. Analytica Chimica Acta, 624(2), 253–268.

    Article  CAS  Google Scholar 

  • Lemos, V. A., & Oliveira, L. A. (2015). Ultrasound-assisted temperature-controlled ionic liquid microextraction for the preconcentration and determination of cadmium content in mussel samples. Food Control, 50, 901–906.

    Article  CAS  Google Scholar 

  • Li, S., Cai, S., Hu, W., Chen, H., & Liu, H. (2009). Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(7), 666–671.

    Article  Google Scholar 

  • Liu, W. P., & Lee, H. K. (2000). Continuous-flow microextraction exceeding1000-fold concentration of dilute analytes. Analytical Chemistry, 72(18), 4462–4467.

    Article  CAS  Google Scholar 

  • Lopez-Garcia, I., Vicente-Martinez, Y., & Hernandez-Cordoba, M. (2014). Determination of cadmium and lead in edible oils by electrothermal atomic absorption spectrometry after reverse dispersive liquid-liquid microextraction. Talanta, 124, 106–110.

    Article  CAS  Google Scholar 

  • Luciano, R. M., Bedendo, G. C., Carletto, J. S., & Carasek, E. (2010). Isolation and preconcentration of Cd(II) from environmental samples using polypropylene porous membrane in a hollow fiber renewal liquid membrane extraction procedure and determination by FAAS. Journal of Hazardous Materials, 177(1–3), 567–572.

    Article  CAS  Google Scholar 

  • Ma, J. J., Du, X., Zhang, J. W., Li, J. C., & Wang, L. Z. (2009). Ultrasound-assisted emulsification-microextraction combined with flame atomic absorption spectrometry for determination of trace cadmium in water samples. Talanta, 80(2), 980–984.

    Article  CAS  Google Scholar 

  • Ma, J., Zhang, J., Du, X., Lei, X., & Li, J. (2010). Solidified floating organic drop microextraction for determination of trace amounts of zinc in water samples by flame atomic absorption spectrometry. Microchimica Acta, 168(1–2), 153–159.

    Article  CAS  Google Scholar 

  • Mandlate, J. S., Soares, B. M., Seeger, T. S., Vecchia, P. D., Mello, P. A., Flores, E. M. M., & Duarte, F. A. (2017). Determination of cadmium and lead at sub-ppt level in soft drinks: An efficient combination between dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry. Food Chemistry, 221, 907–912.

    Article  CAS  Google Scholar 

  • Mao, Y. L., Chen, H., Han, J., Wang, Y., Tang, X., Ni, L., & Wang, L. (2016). Selective transport of cadmium(II) through hollow fiber-supported liquid membrane microextraction using diaza-18-crown-6 in ionic liquids as carrier. Journal of the Iranian Chemical Society, 13(2), 403–410.

    Article  CAS  Google Scholar 

  • Margui, E., Queralt, I., & Hidalgo, M. (2013). Determination of cadmium at ultratrace levels in environmental water samples by means of total reflection X-ray spectrometry after dispersive liquid-liquid microextraction. Journal of Analytical Atomic Spectrometry, 28(2), 266–273.

    Article  CAS  Google Scholar 

  • Meira, L. A., & Dias, F. D. (2017). Application of constrained mixture design and Doehlert matrix in the optimization of dispersive liquid-liquid microextraction assisted by ultrasound for preconcentration and determination of cadmium in sediment and water samples by FAAS. Microchemical Journal, 130, 56–63.

    Article  CAS  Google Scholar 

  • Mohammadzadeh, A., & Ramezani, M. (2016). Modeling and optimization of in syringe magnet stirring assisted-dispersive liquid-liquid microextraction method for extraction of cadmium from food samples by artificial neural network and genetic algorithm. Journal of the Chilean Chemical Society, 61(2), 2973–2977.

    Article  CAS  Google Scholar 

  • Mohammadzadeh, A., Ramezani, M., & Niazi, A. (2016). Magnetic stirring-assisted dispersive liquid-liquid microextraction in narrow neck glass tube for determination of cadmium in water, fruit and vegetable samples using response surface methodology. Desalination and Water Treatment, 57(21), 9745–9755.

    Article  CAS  Google Scholar 

  • Moradi, M., & Yamini, Y. (2012). Application of vesicular coacervate phase for microextraction based on solidification of floating drop. Journal of Chromatography A, 1229, 30–37.

    Article  CAS  Google Scholar 

  • Nazari, S. (2008). Determination of trace amounts of cadmium by modified graphite furnace atomic absorption spectrometry after liquid phase microextraction. Microchemical Journal, 90(2), 107–112.

    Article  CAS  Google Scholar 

  • Nazari, S. (2009). Liquid phase microextraction and ultratrace determination of cadmium by modified graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials, 165(1–3), 200–205.

    Article  CAS  Google Scholar 

  • de Oliveira, A. R. M., de Magalhães, I. R. S., de Santana, F. J. M., & Bonato, P. S. (2008). Microextração em fase líquida (LPME): fundamentos da técnica e aplicações na análise de fármacos em fluidos biológicos. Química Nova, 31(3), 637–644.

    Article  Google Scholar 

  • Pedersen-Bjergaard, S., & Rasmussen, K. E. (1999). Liquid−liquid−liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Analytical Chemistry, 71(14), 2650–2656.

    Article  CAS  Google Scholar 

  • Pedersen-Bjergaard, S., & Rasmussen, K. E. (2008). Liquid-phase microextraction with porous hollow fibers, a miniaturized and highly flexible format for liquid–liquid extraction. Journal of Chromatography A, 1184(1), 132–142.

    Article  CAS  Google Scholar 

  • Pena-Pereira, F., Lavilla, I., & Bendicho, C. (2009). Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: a review. Spectrochimica Acta Part B: Atomic Spectroscopy, 64(1), 1–15.

    Article  Google Scholar 

  • Peng, G., et al. (2016a). Vortex-assisted surfactant-enhanced-emulsification liquid–liquid microextraction with solidification of floating organic droplet combined with flame atomic absorption spectrometry for the fast determination of cadmium in water samples. Water Science and Technology, 73(11), 2781–2788.

    Article  Google Scholar 

  • Peng, G. L., et al. (2016b). Dispersive liquid-liquid microextraction using low-toxic solvent for the determination of heavy metals in water samples by inductively coupled plasma-mass spectrometry. Journal of AOAC International, 99(1), 260–266.

    Article  CAS  Google Scholar 

  • Peng, J. F., Liu, R., Liu, J. F., He, B., Hu, X. L., & Jiang, G. B. (2007). Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62(5), 499–503.

    Article  Google Scholar 

  • Perez-Outeiral, J., Millan, E., & Garcia-Arrona, R. (2014). Use of dispersive liquid-liquid microextraction and UV-Vis Spectrophotometry for the determination of cadmium in water samples. Journal of Spectroscopy, 2014, 1–4.

    Article  Google Scholar 

  • Pinto, I. P., & Pedroso, M. P. (2015). Microextração em gota única (SDME): fundamentos e aplicações. Scientia Chromatographica, 7(3), 183–198.

    Article  Google Scholar 

  • Rajabi, M., Kamalabadi, M., Jamali, M. R., Zolgharnein, J., & Asanjarani, N. (2013). Application of response surface methodology for optimization of ionic liquid-based dispersive liquid-liquid microextraction of cadmium from water samples. Human & Experimental Toxicology, 32(6), 620–631.

    Article  CAS  Google Scholar 

  • Ramezani, M., Azarmehr, A. A., & Mohammadzadeh, A. (2015). Ion-pair-based surfactant-assisted dispersive liquid–liquid microextraction for the determination of cadmium in water samples: optimization using response surface methodology. Russian Journal of Applied Chemistry, 88(12), 2021–2028.

    Article  CAS  Google Scholar 

  • Rezaee, M., Assadi, Y., Hosseini, M.-R. M., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A, 1116(1), 1–9.

    Article  CAS  Google Scholar 

  • Rivas, R. E., Lopez-Garcia, I., & Hernandez-Cordoba, M. (2009). Determination of traces of lead and cadmium using dispersive liquid-liquid microextraction followed by electrothermal atomic absorption spectrometry. Microchimica Acta, 166(3–4), 355–361.

    Article  CAS  Google Scholar 

  • Rivas, R. E., Lopez-Garcia, I., & Hernandez-Cordobo, M. (2010). Microextraction based on solidification of a floating organic drop followed by electrothermal atomic absorption spectrometry for the determination of ultratraces of lead and cadmium in waters. Analytical Methods, 2(3), 225–230.

    Article  CAS  Google Scholar 

  • Rizwan, M., et al. (2016). Cadmium minimization in wheat: a critical review. Ecotoxicology and Environmental Safety, 130, 43–53.

    Article  CAS  Google Scholar 

  • Rojas, F. S., Ojeda, C. B., & Pavon, J. M. C. (2011). Dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry for determination of cadmium in environmental, water and food samples. Analytical Methods, 3(7), 1652–1655.

    Article  CAS  Google Scholar 

  • Sahin, C. A., & Durukan, I. (2011). Ligandless-solidified floating organic drop microextraction method for the preconcentration of trace amount of cadmium in water samples. Talanta, 85(1), 657–661.

    Article  Google Scholar 

  • Sharafi, K., Fattahi, N., Pirsaheb, M., Yarmohamadi, H., & Fazlzadeh, D. M. (2015). Trace determination of lead in lipsticks and hair dyes using microwave-assisted dispersive liquid–liquid microextraction and graphite furnace atomic absorption spectrometry. International Journal of Cosmetic Science, 37(5), 489–495.

    Article  CAS  Google Scholar 

  • Shirkhanloo, H., Ghazaghi, M., & Mousavi, H. Z. (2016). Cadmium determination in human biological samples based on trioctylmethyl ammonium thiosalicylate as a task-specific ionic liquid by dispersive liquid-liquid microextraction method. Journal of Molecular Liquids, 218, 478–483.

    Article  CAS  Google Scholar 

  • Silva, E. D., Correia, L. O., dos Santos, L. O., Vieira, E. V. D., & Lemos, V. A. (2012). Dispersive liquid-liquid microextraction for simultaneous determination of cadmium, cobalt, lead and nickel in water samples by inductively coupled plasma optical emission spectrometry. Microchimica Acta, 178(3–4), 269–275.

    Article  Google Scholar 

  • Soylak, M., & Unsal, Y. E. (2012). Dispersive liquid-liquid microextraction of cadmium(II) for preconcentration prior to flame atomic absorption spectrometric detection in water. Toxicological and Environmental Chemistry, 94(8), 1480–1489.

    Article  CAS  Google Scholar 

  • Stone, M. L., Rae, C., Stewart, F. F., & Wilson, A. D. (2013). Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 312, 124–129.

    Article  CAS  Google Scholar 

  • Vichapong, J., Burakham, R., & Srijaranai, S. (2013). Vortex-assisted surfactant-enhanced-emulsification liquid–liquid microextraction with solidification of floating organic droplet combined with HPLC for the determination of neonicotinoid pesticides. Talanta, 117, 221–228.

    Article  CAS  Google Scholar 

  • Visser, A. E., et al. (2002). Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: synthesis, characterization, and extraction studies. Environmental Science & Technology, 36(11), 2523–2529.

    Article  CAS  Google Scholar 

  • Wen, X. D., Deng, Q. W., Guo, J., & Yang, S. C. (2011a). Ultra-sensitive determination of cadmium in rice and water by UV-Vis spectrophotometry after single drop microextraction. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 79(3), 508–512.

    Article  CAS  Google Scholar 

  • Wen, X. D., Yang, Q. L., Yan, Z. D., & Deng, Q. W. (2011b). Determination of cadmium and copper in water and food samples by dispersive liquid-liquid microextraction combined with UV-Vis spectrophotometry. Microchemical Journal, 97(2), 249–254.

    Article  CAS  Google Scholar 

  • Wu, Q. H., Wu, C. X., Wang, C., Lu, X. N., Li, X. M., & Wang, Z. (2011). Sensitive determination of cadmium in water, beverage and cereal samples by a novel liquid-phase microextraction coupled with flame atomic absorption spectrometry. Analytical Methods, 3(1), 210–216.

    Article  CAS  Google Scholar 

  • Xia, L. B., Hu, B., Jiang, Z. C., Wu, Y. L., & Liang, Y. (2004). Single-drop microextraction combined with low-temperature electrothermal vaporization ICPMS for the determination of trace Be, Co, Pd, and Cd in biological samples. Analytical Chemistry, 76(10), 2910–2915.

    Article  CAS  Google Scholar 

  • Xu, L., Basheer, C., & Lee, H. K. (2007). Developments in single-drop microextraction. Journal of Chromatography A, 1152(1), 184–192.

    Article  CAS  Google Scholar 

  • Yilmaz, E., & Soylak, M. (2015). Switchable polarity solvent for liquid phase microextraction of Cd(II) as pyrrolidinedithiocarbamate chelates from environmental samples. Analytica Chimica Acta, 886, 75–82.

    Article  CAS  Google Scholar 

  • Zanjani, M. R. K., Yamini, Y., Shariati, S., & Jönsson, J. Å. (2007). A new liquid-phase microextraction method based on solidification of floating organic drop. Analytica Chimica Acta, 585(2), 286–293.

    Article  Google Scholar 

  • Zeng, C., Hu, Y., & Luo, J. (2012). Ionic liquid-based hollow fiber supported liquid membrane extraction combined with thermospray flame furnace AAS for the determination of cadmium. Microchimica Acta, 177(1), 53–58.

    Article  CAS  Google Scholar 

  • Zhang, J. W., Wang, Y. K., Du, X., Lei, X., Ma, J. J., & Li, J. C. (2011). Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace cadmium in water samples by flame atomic absorption spectrometry. Journal of the Brazilian Chemical Society, 22(3), 446–453.

    Article  CAS  Google Scholar 

  • Zhang, Y., et al. (2016). Direct determination of cadmium in foods by solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry using a tungsten coil trap. Spectrochimica Acta Part B: Atomic Spectroscopy, 118, 119–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valfredo Azevedo Lemos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires Santos, A., das Graças Andrade Korn, M. & Azevedo Lemos, V. Methods of liquid phase microextraction for the determination of cadmium in environmental samples. Environ Monit Assess 189, 444 (2017). https://doi.org/10.1007/s10661-017-6151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6151-8

Keywords

Navigation