Skip to main content
Log in

Mobility and dissipation of chlorpyriphos and quinalphos in sandy clay loam in an agroecosystem—a laboratory-based soil column study

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Leaching potential of pesticides, apart from climatological factors, depends on soil physical properties, soil–pesticide interaction and chemical nature of the molecule. Recent investigations have revealed the presence of various organophosphate pesticides in various agroecosystems. The present study investigated the soil transport mechanism of commonly used organophosphate pesticides in acidic sandy clay loam soils of Kerala State, India. Packed soil column experiment was undertaken under laboratory condition for 30 days. Unsaturated flow was carried out using distilled water/0.01 M CaCl2 solution after applying chlorpyriphos and quinalphos at the rate of 0.04% a.i.ha−1 and 0.025% a.i.ha−1, respectively. The study revealed the retention of residues of chlorpyriphos and quinalphos in the top 5-cm layer. Irrespective of the applied concentration of chlorpyriphos and quinalphos, the relative concentration of the pesticides in soil was similar. About 56% of the applied chemicals were dissipated in 30 days of unsaturated flow. A new dissipation compound iron, tricarbonyl [N-(phenyl-2-pyridinylmethyene) benzenamine-N, N′], was detected in GCMS analysis of soil extract from distilled water percolated soil. The dissipation of chlorpyriphos and quinalphos was faster in 0.01 M CaCl2-treated soil column. Among the pesticides analysed, the residue of quinalphos was detected in leachate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a i:

Active ingredient

BDL:

Below detection limit

EC:

Emusifiable concentrate

M:

Molar

μg g−1 :

Microgram per gram

References

  • Babu, V., Unnikrishnan, G., Anu, S., & Nair, S. M. (2011). Distribution of Organophosphorus pesticides in the bed sediments of a backwater system located in an agricultural watershed: Influence of seasonal intrusion of seawater. Archives of Environmental Contamination and Toxicology, 60, 597–609.

    Article  CAS  Google Scholar 

  • Beinum, W. V., Beulke, S., & Brown, C. (2005). Pesticide sorption and diffusion in natural clay loam aggregates. Journal of Agricultural and Food Chemistry, 53, 9146–9154.

    Article  Google Scholar 

  • Bhatia, G., Srivastava, A., & Srivastava, P. C. (2012). Effect of farmyard manure and conjoint application of farmyard manure and microbial consortium on lindane residues in soil, drainage water and crops in lysimeter. Toxicological and Environmental Chemistry, 94(4), 685–693.

    Article  CAS  Google Scholar 

  • Brown, C. D., Hollis, J. M., Bettinson, R. J., & Walker, A. (2000). Leaching of pesticides and a bromide tracer through lysimeters from five contrasting soils. Pest Management Science, 56, 83–93.

    Article  CAS  Google Scholar 

  • Brown, C. D., Fryer, C. J., & Walker, A. (2001). Influence of topsoil tilth and soil moisture status on losses of pesticide to drains from a heavy clay soil. Pest Management Science, 57, 1127–1134.

    Article  CAS  Google Scholar 

  • Carringer, R. D., Weber, J. B., & Monaco, T. J. (1975). Adsorption-desorption of selected pesticides by organic matter and montmorillonite. Journal of Agricultural and Food Chemistry, 23(3), 568–572.

    Article  CAS  Google Scholar 

  • Cherrier, R., Boivin, A., Perrin-Ganier, C., & Schiavon, M. (2005). Sulcotrione versus atrazine transport and degradation in soil columns. Pest Management Science, 61, 899–904.

    Article  CAS  Google Scholar 

  • Chishti, Z., Hussain, S., Arshad, K. R., Khalid, A., & Arshad, M. (2013). Microbial degradation of chlorpyrifos in liquid media and soil. Journal of Environmental Management, 114, 372–380.

    Article  CAS  Google Scholar 

  • Dores, E. F. G. C., Spadotto, C. A., Weber, L. S. O., Villa, R. D., Vecchiato, A. B., & Pinto, A. A. (2016). Environmental behavior of Chlorpyrifos and Endosulfan in a tropical soil in Central Brazil. Journal of Agricultural and Food Chemistry, 64(20), 3917–3924.

    Google Scholar 

  • Eaton, D. L., Daroff, R. B., Autrup, H., Bridges, J., Buffler, P., Costa, L. G., Coyle, J., McKhann, G., Mobley, W. C., Nadel, L., Neubert, D., Schutle-Hermann, R., & Spencer, P. S. (2008). Review of the toxicity of chlorpyrifos with an emphasis on human exposure and neurodevelopment. Critical Reviews in Toxicology, 38(2), 1–125.

    Article  CAS  Google Scholar 

  • El-Nahhal, Y., Undabeytia, T., Polubesova, T., Mishael, Y. G., Nir, S., & Rubin, B. (2001). Organo-clay formulations of pesticides: Reduced leaching and photodegradation. Applies clay science, 18, 309–326.

    Article  CAS  Google Scholar 

  • Fenoll, J., Ruiz, E., Flores, P., Hellin, P., & Navarro, S. (2011). Reduction of the movement and persistence of pesticides in soil through common agronomic practices. Chemosphere, 85, 1375–1382.

    Article  CAS  Google Scholar 

  • George, T., Beevi, S. N., Xavier, G., Kumar, P., & George, J. (2013). Dissipation kinetics and assessment of processing factor for chlorpyriphos and lambda-cyhalothrin in cardamom. Environmental Monitoring and Assessment, 185, 5277–5284.

    Article  CAS  Google Scholar 

  • Handa, S. K., Agnihotri, N. P., & Kulshrestha, G. (1999). Pesticide residues: Significance, management and analysis (pp. 199–214). India: Research periodicals and book publishing house.

    Google Scholar 

  • Hirte, W. F. (1969). The use of dilution plate method for the determination of soil microflora. The qualitative demonstration of bacteria and actinomycetes. Zentrall Bakteriol Parasitenkd Infektionskr Hyg, 123(2), 167–178.

    CAS  Google Scholar 

  • Imache, A. E., Dahchour, A., Elamrani, B., Dousset, S., Pozzonni, F., & Guzzella, L. (2009). Leaching of Diuron, Linuron and their main metabolites in undisturbed field lysimeters. Journal of Environmental Science and Health, 44(2), 31–37.

  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd..

    Google Scholar 

  • Jacob, V. C. (1979). Laterites and laterites of Kerala, India. International seminar in laterisation process. New Delhi: Oxford & IBH publishing Co..

    Google Scholar 

  • Kumari, B., Madan, V. K., & Kathpal, T. S. (2008). Status of insecticide contamination of soil and water in Haryana, India. Environmental Monitoring and Assessment, 136, 239–244.

    Article  CAS  Google Scholar 

  • Kumari, B., & Kathpal, T. S. (2010). Pesticides, methods for their residues estimation (pp. 172–194). New Delhi: NIPA.

    Google Scholar 

  • Liu, W., Gan, J., Papiernik, S. K., & Yates, S. R. (2000). Sorption and catalytic hydrolysis of Diethatyl-ethyl on Homoionic clays. Journal of Agricultural and Food Chemistry, 48, 1935–1940.

    Article  CAS  Google Scholar 

  • Lopez-Perez, G. C., Arias-Estevez, M., Lopez-Periago, E., Soto-Gonzalez, B., Cancho-Grande, B., & Simal-Gandara, J. (2006). Dynamics of pesticides in potato crops. Journal of Agricultural and Food Chemistry, 54, 1797–1803.

    Article  CAS  Google Scholar 

  • Murugan, A. V., Swarnam, T. P., & Gnanasambandan, S. (2013). Status and effect of pesticide residues in soil under different land uses of Andaman lslands, India. Environmental Monitoring and Assessment, 185, 8135–8145.

    Article  CAS  Google Scholar 

  • OECD. (2004). Guidelines for the testing of chemicals no.312, leaching in soil columns. Paris: OECD publishers.

    Book  Google Scholar 

  • Premachandran, P.N., (2007). Benchmark soils of Kerala, soil survey organisation. Agriculture (S.C. Unit) department, Govt. of Kerala, 5-61.

  • Ruggieri, F., D’Archivio, A. A., Fanelli, M., Mazzeo, P., & Paoletti, E. (2008). A multi-lysimeter investigation on the mobility and persistence of pesticides in the loam soil of the Fucino plain (Italy). Journal of Environ Mont, 10, 747–752.

    Article  CAS  Google Scholar 

  • Sanagi, M. M., Salleh, S., Ibrhim, W. A. W., Naim, A. A., Hermawan, D., Miskam, M., Hussain, I., Aboul-Enein, H. Y. (2013). Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples. Journal of Food Composition and Analysis, 32, 155–161.

  • Sharma, S., & Singh, B. (2014). Metabolism and persistence of imidacloprid in different types of soils under laboratory conditions. Journal of Environmental Analytical Chemistry, 94(11), 1100–1112.

    Article  CAS  Google Scholar 

  • Spark, K. M., & Swift, R. S. (2002). Effect of soil composition and dissolved organic matter on pesticide sorption. Science of the Total Environment, 298, 147–161.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harilal C.C..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G.P., B., C.C., H. Mobility and dissipation of chlorpyriphos and quinalphos in sandy clay loam in an agroecosystem—a laboratory-based soil column study. Environ Monit Assess 189, 506 (2017). https://doi.org/10.1007/s10661-017-6142-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6142-9

Keywords

Navigation