Skip to main content

Advertisement

Log in

Assessing differences in macrofaunal assemblages as a factor of sieve mesh size, distance between samples, and time of sampling

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

With increasing cascading effects of climate change on the marine environment, as well as pollution and anthropogenic utilization of the seafloor, there is increasing interest in tracking changes to benthic communities. Macrofaunal surveys are traditionally conducted as part of pre-incident environmental assessment studies and post-incident monitoring studies when there is a potential impact to the seafloor. These surveys usually characterize the structure and/or spatiotemporal distribution of macrofaunal assemblages collected with sediment cores; however, many different sampling protocols have been used. An assessment of the comparability of past and current survey methods was in need to facilitate future surveys and comparisons. This was the aim of the present study, conducted off the Oregon coast in waters 25–35 m deep. Our results show that the use of a sieve with a 1.0-mm mesh size gives results for community structure comparable to results obtained from a 0.5-mm mesh size, which allows reliable comparisons of recent and past spatiotemporal surveys of macroinfauna. In addition to our primary objective of comparing methods, we also found interacting effects of seasons and depths of collection. Seasonal differences (summer and fall) were seen in infaunal assemblages in the wave-induced sediment motion zone but not deeper. Thus, studies where wave-induced sediment motion can structure the benthic communities, especially during the winter months, should consider this effect when making temporal comparisons. In addition, some macrofauna taxa-like polychaetes and amphipods show high interannual variabilities, so spatiotemporal studies should make sure to cover several years before drawing any conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alden III, R. W., Weisberg, S. B., Ranasinghe, J. A., & Dauer, D. M. (1997). Optimizing temporal sampling strategies for benthic environmental monitoring programs. Marine Pollution Bulletin, 34(11), 913–922.

    Article  Google Scholar 

  • Bachelet, G. (1990). The choice of a sieving mesh size in the quantitative assessment of marine macrobenthos: a necessary compromise between aims and constraints. Marine Environmental Research, 3, 21–35.

    Article  Google Scholar 

  • Baker, J. H., Kimball, K. T., Jobe, W. D., Janousek, J., Howard, C. L., & Chase, P. R. (1981). Volume I – pollutant fate and effects studies. Part 6 – Benthic biology. In C. A. Bedinger & L. Z. Kirby (Eds.), Ecological investigations of petroleum production platforms in the central Gulf of Mexico (pp. 1–392). New Orleans: Bureau of Land Management.

    Google Scholar 

  • Barrio Froján, C. R. S., Cooper, K. M., & Bolam, S. G. (2016). Towards an integrated approach to marine benthic monitoring. Marine Pollution Bulletin, 104(1–2), 20–28.

    Article  Google Scholar 

  • Bedard, R., Hagerman, G., Previsic, M., Siddiqui, O., Thresher, R., & Ram, B. (2005) Offshore wave power feasibility demonstration project: final summary report, project definition study. EPRI Global WP 009–US Rev 1, Palo Alto, CA, p 1–34.

  • Bergen, M., Weisberg, S. B., Smith, R. W., Cadien, D. B., Dalkey, A., Montagne, D. E., Stull, J. K., Velarde, R. G., & Ranasinghe, J. A. (2001). Relationship between depth, sediment, latitude, and the structure of benthic infaunal assemblages on the mainland shelf on southern California. Marine Biology, 138, 637–647.

    Article  Google Scholar 

  • Bertrán, C., Fierro, P., Encalada, E., Peña-Cortés, F., Tapia, J., Hauenstein, E., & Vargas-Chacoff, L. (2016). Macrobenthos of the coastal Budi lagoon, southern Chile: changes associated with seasonal environmental variation. Brazilian Journal of Oceanography, 64(3), 239–248.

    Article  Google Scholar 

  • Bishop, J. D. D., & Hartley, J. P. (1986). A comparison of the fauna retained on 0.5 mm and 1.0 mm meshes from benthic samples taken in the Beatrice Oilfield, Moray Firth, Scotland. Proceedings of the Royal Society of Edinburg, 91B, 247–262.

    Google Scholar 

  • Blair, R. (2001) Environmental monitoring and assessment program: west - research strategy. Environmental Protection Agency, 1–41.

  • Blanchard, A. L., & Feder, H. M. (2014). Interactions of habitat complexity and environmental characteristics with microbenthic community structure at multiple spatial scales in the northeastern Chukchi Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 102, 132–143.

    Article  Google Scholar 

  • Boehlert, G. W., & Gill, A. B. (2010). Environmental and ecological effects of ocean renewable energy development, a current synthesis. Oceanography, 23(2), 68–81.

    Article  Google Scholar 

  • Bolam, S. G. (2014). Macrofaunal recovery following the intertidal recharge of dredged material: a comparison of structural and functional approaches. Marine Environmental Research, 97, 15–29.

    Article  CAS  Google Scholar 

  • Bond, N. A., Cronin, M. F., Freeland, H., & Mantua, N. (2015). Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters, 42, 3414–3420.

    Article  Google Scholar 

  • Bonsdorff, E. (1992). Drifting algae and zoobenthos—effects on settling and community structure. Netherlands Journal of Sea Research, 30, 57–62.

    Article  Google Scholar 

  • Carey, A. G. (1972). Ecological observations on the benthic invertebrates from the Central Oregon continental shelf. In A. T. Pruter & D. L. Alverson (Eds.), The Columbia River estuary and adjacent ocean waters, bioenvironmental studies (pp. 422–443). Seattle: University Of Washington Press.

    Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: user manual/tutorial. Plymouth: PRIMER-E.

    Google Scholar 

  • Connolly, T. P., Hickey, B. M., Geier, S. L., & Cochlan, W. P. (2010). Processes influencing seasonal hypoxia in the northern California current system. Journal of Geophysical Research, 115, C03021.

    Article  CAS  Google Scholar 

  • Couto, T., Patrício, J., Neto, J. M., Ceia, F. R., Franco, J., & Marques, J. C. (2010). The influence of mesh size in environmental quality assessment of estuarine macrobenthic communities. Ecological Indicators, 10, 1162–1173.

    Article  Google Scholar 

  • Davies, A. G. (1983). Wave interactions with rippled sand beds. In B. Johns (Ed.) Physical oceanography of coastal and shelf areas. Elsevier Science Publisher BV, p 1–66.

  • Di Lorenzo, E., Combes, V., Keister, J. E., Strub, P. T., Thomas, A. C., Franks, P. J. S., Ohman, M. D., Furtado, J. C., Bracco, A., Bograd, S. J., Peterson, W. T., Schwing, F. B., Chiba, S., Taguchi, B., Hormazabal, S., & Parada, C. (2013). Synthesis of Pacific Ocean climate and ecosystem dynamics. Oceanography, 26(4), 68–81.

    Article  Google Scholar 

  • Dutertre, M., Hamon, D., Chevalier, C., & Ehrhold, A. (2013). The use of the relationships between environmental factors and benthic macrofaunal distribution in the establishment of a baseline for coastal management. ICES Journal of Marine Science, 70, 294–308.

    Article  Google Scholar 

  • Eleftheriou, A., & Moore, D. C. (2013) Macrofauna techniques. In A. Eleftherio (Ed.) Methods for the Study of Marine Benthos, Fourth Edition. John Wiley & Sons, Ltd, p 175–251.

  • European Commission. (2010). Commission decision of 1 September 2010 on criteria and methodological standards on good environmental policy (marine strategy framework directive). Official Journal of the European Union, L 232, 14–24.

    Google Scholar 

  • Ferraro, S. P., & Cole, F. A. (1990). Taxonomic level and sample size sufficient for assessing pollution impacts on the Southern California Bight macrobenthos. Marine Ecology Progress Series, 67, 251–262.

    Article  Google Scholar 

  • Ferraro, S. P., Cole, F. A., & Olsen, A. R. (2006). A more cost-effective EMAP benthic macrofaunal sampling protocol. Environmental Monitoring and Assessment, 116, 275–290.

    Article  Google Scholar 

  • Grant, J. (1981). Sediment transport and disturbance on an intertidal sandflat: infaunal distribution and recolonization. Marine Ecology Progress Series, 6, 249–255.

    Article  Google Scholar 

  • Hammerstrom, K. K., Ranasinghe, J. A., Weisberg, S. B., Oliver, J. S., Fairey, W. R., Slattery, P. N., & Oakden, J. M. (2010). Effect of sample area and sieve size on benthic macrofaunal community condition assessments in California enclosed bays and estuaries. Integrated Environmental Assessment and Management, 8(4), 649–658.

    Article  Google Scholar 

  • Hartley, J. P. (1982). Methods for monitoring offshore macrobenthos. Marine Pollution Bulletin, 13(5), 150–154.

    Article  Google Scholar 

  • Hartmann, D. L. (2015). Pacific sea surface temperature and the winter of 2014. Geophysical Research Letters, 42, 1894–1902.

    Article  Google Scholar 

  • Henkel, S. K., & Politano, K. K. (2017). Small proportions of silt linked to distinct and predictable differences in marine macrofaunal assemblages on the continental shelf. Continental Shelf Research.

  • Henkel, S. K., Conway, F. D. L., & Boehlert, G. W. (2013). Environmental and human dimensions of ocean renewable energy development. Proceedings of the IEEE, 101(4), 991–998.

    Article  Google Scholar 

  • Hogue, E. W. (1982). Sediment disturbance and the spatial distributions of shallow water meiobenthic nematodes on the open Oregon coast. Journal of Marine Research, 40(3), 551–573.

    Google Scholar 

  • Hogue, E. W., & Carey, A. G. (1982). Feeding ecology of 0-age flatfishes at a nursery ground on the Oregon coast. Fishery Bulletin, 80(3), 555–565.

    Google Scholar 

  • James, R. J., Lincoln Smith, M. P., & Fairweather, P. G. (1995). Sieve mesh-size and taxonomic resolution needed to describe natural spatial variation of marine macrofauna. Marine Ecology Progress Series, 118, 187–198.

    Article  Google Scholar 

  • Lampadariou, N., Karakassis, I., & Pearson, T. H. (2005). Cost/benefit analysis of a benthic monitoring programme of organic benthic enrichment using different sampling and analysis methods. Marine Pollution Bulletin, 50, 1606–1618.

    Article  CAS  Google Scholar 

  • Langhamer, O. (2010). Effects of wave energy converters on the surrounding soft-bottom macrofauna (west coast of Sweden). Marine Environmental Research, 69, 374–381.

    Article  CAS  Google Scholar 

  • Largier, J., Behrens, D., & Robart, M. (2008) The potential impact of WEC development on nearshore and shoreline environments through a reduction in nearshore wave energy. California Energy Commission. PIER Energy-Related Environmental Research Program and California Ocean Protection Council, p 1–202.

  • Leeney, R. H., Greaves, D., Conley, D., & O'Hagan, A. M. (2014). Environmental impact assessments for wave energy developments—learning from existing activities and informing future research priorities. Ocean & Coastal Management, 99, 14–22.

    Article  Google Scholar 

  • Lissner, A., Phillips, C., Cadien, D., Smith, R., Bernstein, B., Cimberg, R., Kauwling, T., & Anikouchine, W. (1985) Assessment of long-term changes in biological communities in the Santa Maria Basin and western Santa Barbara Channel: phase I; Volume II, Synthesis of findings. Science Applications International Corporation for the U.S. Department of the Interior, Minerals Management Service Pacific OCS Office, p 1–893.

  • Lu, L., & Wu, R. S. S. (2007). Seasonal effects on recolonization of macrobenthos in defaunated sediment: a series of field experiments. Journal of Experimental Marine Biology and Ecology, 351, 199–210.

    Article  Google Scholar 

  • Marine Taxonomic Services (2009) Oregon coast ocean dredged material disposal site benthic survey. Prepared for US Environmental Protection Agency Region 10 Seattle, Washington. Contract number: 08-UDR010.

  • Massé, H. (1972). Quantitative investigations of sand-bottom macrofauna along the Mediterranean north-west coast. Marine Biology, 15, 209–220.

    Article  Google Scholar 

  • Meiβner, K., & Blank, M. (2009). Spiophanes norrisi sp. nov. (Polychaeta: Spionidae)—a new species from the NE Pacific coast, separated from the Spiophanes bombyx complex based on both morphological and genetic studies. Zootaxa, 2278, 1–25.

    Google Scholar 

  • Montagna, P. A., Baguley, J. G., Hsiang, C.-Y., & Reuscher, M. G. (2017). Comparison of sampling methods for deep-sea infauna. Limnology and Oceanography: Methods, 15, 166–183.

    Article  Google Scholar 

  • Morrisey, D. J., Howitt, L., Underwood, A. J., & Stark, J. S. (1992a). Spatial variation in soft-sediment benthos. Marine Ecology Progress Series, 81, 197–204.

    Article  Google Scholar 

  • Morrisey, D. J., Underwood, A. J., Howitt, L., & Stark, J. S. (1992b). Temporal variation in soft-sediment benthos. Journal of Experimental Marine Biology and Ecology, 164, 233–245.

    Article  Google Scholar 

  • Nelson, W. G., Hyland, J. L., Lee, H., Cooksey, C.L., Lamberson, J. O., Cole, F. A., & Clinton, P. J. (2008) Ecological condition of coastal ocean waters along the U.S. western continental shelf: 2003. U.S. EPA 620/R-08/001 and NOAA Technical Memorandum NOS NCCOS, 79, 1–137.

  • Oliver, J. S., Slattery, P. N., Hulberg, L. W., & Nybakken, J. W. (1980). Relationships between wave disturbance and zonation of benthic invertebrate communities along a subtidal high-energy beach in Monterey Bay, California. Fishery Bulletin, 78(2), 437–454.

    Google Scholar 

  • Oregon Executive Order No 08-07 (2008) Directing state agencies to protect coastal communities in siting marine reserves and wave energy projects. https://www.oregon.gov/gov/Documents/executive_orders/eo0807.pdf.

  • Peterson, J. O., Morgan, C. A., Peterson, W. T., & Di Lorenzo, E. (2013). Seasonal and interannual variation in the extent of hypoxia in the northern California current from 1998-2012. Limnology Oceanography, 58(6), 2279–2292.

    Article  CAS  Google Scholar 

  • Pinto, R., Patrício, J., Baeta, A., Fath, B. D., Neto, J. M., & Marques, J. C. (2009). Review and evaluation of estuarine biotic indices to assess benthic condition. Ecological Indicators, 9, 1–25.

    Article  Google Scholar 

  • R Development Core Team. (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna www.R-project.org.

  • Rees, H. L. (1984). A note on mesh selection and sampling efficiency in benthic studies. Marine Pollution Bulletin, 15(6), 225–229.

    Article  Google Scholar 

  • Rogers, S. I., Somerfield, P. J., Schratzberger, M., Warwick, R., Maxwell, T. A. D., & Ellis, J. R. (2008). Sampling strategies to evaluate the status of offshore soft sediment assemblages. Marine Pollution Bulletin, 56, 880–894.

    Article  CAS  Google Scholar 

  • Schlacher, T. A., & Wooldridge, T. H. (1996). How sieve mesh size affects sample estimates of estuarine benthic macrofauna. Journal of Experimental Marine Biology and Ecology, 201, 159–171.

    Article  Google Scholar 

  • Souza, G. B. G., & Barros, F. (2015). Analysis of sampling methods of estuarine benthic macrofaunal assemblages: sampling gear, mesh size, and taxonomic resolution. Hydrobiologia, 743, 157–174.

    Article  Google Scholar 

  • Thompson, B. W., Riddle, M. J., & Stark, J. S. (2003). Cost-efficient methods for marine pollution monitoring at Casey Station, East Antarctica: the choice of sieve mesh-size and taxonomic resolution. Marine Pollution Bulletin, 46, 232–243.

    Article  CAS  Google Scholar 

  • Thresher, R., & Musial, W. (2010). Ocean renewable energy’s potential role in supplying future electrical energy needs. Oceanography, 23(2), 16–21.

    Article  Google Scholar 

  • U.S. EPA (1987) Recommended protocols for sampling and analyzing subtidal benthic macroinvertebrate assemblages in Puget Sound. U.S. Environmental Protection Agency, 1–38.

  • U.S. EPA (2001) National Coastal Assessment: field operations manual. U.S. Environmental Protection Agency EPA/620/R-01/003, 1–77.

  • WoRMS Editorial Board (2016) World Register of Marine Species. Available from http://www.marinespecies.org.

Download references

Acknowledgments

This study was funded by the Northwest National Marine Renewable Energy Center. The authors acknowledge Captain Mike Kriz and Kody Robinson of the R/V Elakha (Oregon State University) for the sampling in 2012, and Jeffery Cordell (University of Washington) and Kathy Welch (AquaMarine Environmental Services) for the taxonomic assistance with, respectively, the amphipod and polychaete specimens. Chip Hogue and Howard Jones graciously provided the 1978 data for this study and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lenaïg G. Hemery.

Electronic supplementary material

Online Resource 1

List of macrofaunal organisms and total of individuals sampled during each of the three surveys: MB in July, August and October 1978, NETS in August and October 2012, and HB and MB in July, August and October 2012. (DOCX 30 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemery, L.G., Politano, K.K. & Henkel, S.K. Assessing differences in macrofaunal assemblages as a factor of sieve mesh size, distance between samples, and time of sampling. Environ Monit Assess 189, 413 (2017). https://doi.org/10.1007/s10661-017-6127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6127-8

Keywords

Navigation