Skip to main content

Land use and land cover (LULC) of the Republic of the Maldives: first national map and LULC change analysis using remote-sensing data


The Maldives islands in recent decades have experienced dramatic land-use change. Uninhabited islands were turned into new resort islands; evergreen tropical forests were cut, to be replaced by fields and new built-up areas. All these changes happened without a proper monitoring and urban planning strategy from the Maldivian government due to the lack of national land-use and land-cover (LULC) data. This study aimed to realize the first land-use map of the entire Maldives archipelago and to detect land-use and land-cover change (LULCC) using high-resolution satellite images and socioeconomic data. Due to the peculiar geographic and environmental features of the archipelago, the land-use map was obtained by visual interpretation and manual digitization of land-use patches. The images used, dated 2011, were obtained from Digital Globe’s WorldView 1 and WorldView 2 satellites. Nine land-use classes and 18 subclasses were identified and mapped. During a field survey, ground control points were collected to test the geographic and thematic accuracy of the land-use map. The final product’s overall accuracy was 85%. Once the accuracy of the map had been checked, LULCC maps were created using images from the early 2000s derived from Google Earth historical imagery. Post-classification comparison of the classified maps showed that growth of built-up and agricultural areas resulted in decreases in forest land and shrubland. The LULCC maps also revealed an increase in land reclamation inside lagoons near inhabited islands, resulting in environmental impacts on fragile reef habitat. The LULC map of the Republic of the Maldives produced in this study can be used by government authorities to make sustainable land-use planning decisions and to provide better management of land use and land cover.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Anderson, J. R., Hardy, E. E., Roach, J. T., Witmer, R. E., & Peck, D. L. (1976). A land use and land cover classification system for use with remote sensor data. A Revision of the Land Use Classification System as Presented in U.S. Geological Survey Circular 671, 964, 41.

  2. Brook, B. W. (2008). Synergies between climate change, extinctions and invasive vertebrates. Wildlife Research. doi:10.1071/WR07116.

  3. Dale, V. H. (1997). The relationship between land-use change and climate change. Ecological Applications. doi:1051-0761(1997)007[0753:TRBLUC]2.0.CO;2/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2.

  4. Das, T. (2009). Land use land cover change detection: an object oriented approach. Munster: University of Munster.

    Google Scholar 

  5. Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: using remote sensing to promote sustainable urbanization. Applied Geography, 29(3), 390–401. doi:10.1016/j.apgeog.2008.12.005.

    Article  Google Scholar 

  6. Ferrario, F., Beck, M. W., Storlazzi, C. D., Micheli, F., Shepard, C. C., & Airoldi, L. (2014). The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications, 5(May), 3794. doi:10.1038/ncomms4794.

    CAS  Google Scholar 

  7. Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. doi:10.1016/S0034-4257(01)00295-4.

    Article  Google Scholar 

  8. Game, E. T., Lipsett-Moore, G., Saxon, E., Peterson, N., & Sheppard, S. (2011). Incorporating climate change adaptation into national conservation assessments. Global Change Biology, 17(10), 3150–3160. doi:10.1111/j.1365-2486.2011.02457.x.

    Article  Google Scholar 

  9. Gerrard, M. B., & Wannier, G. E. (2013). Threatened island nations: legal implications of rising seas and a changing climate. Cambridge University Press. Retrieved from

  10. Ghina, F. (2003). Sustainable-development in small island developing states. Environment Development and Sustainability, 5, 139–165.

    Article  Google Scholar 

  11. Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science (New York, N.Y.), 318(5857), 1737–1742. doi:10.1126/science.1152509.

    CAS  Article  Google Scholar 

  12. Kench, P. (2011). Maldives. In D. Hopley (Ed.), Encyclopedia of modern coral reefs: structure, form and process (pp. 648–653). Dordrecht: Springer Netherlands. doi:10.1007/978-90-481-2639-2_107.

    Chapter  Google Scholar 

  13. Kench, P. S., McLean, R. F., & Nichol, S. L. (2005). New model of reef-island evolution: Maldives, Indian Ocean. Geology, 33(2), 145. doi:10.1130/g21066.1.

    Article  Google Scholar 

  14. Klein, C. J., Jupiter, S. D., Selig, E. R., Watts, M. E., Halpern, B. S., Kamal, M., et al. (2012). Forest conservation delivers highly variable coral reef conservation outcomes. Ecological Applications, 22(4), 1246–1256. doi:10.1890/11-1718.1.

    Article  Google Scholar 

  15. Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., … Xu, J. (2001). The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11(4), 261–269. doi:10.1016/S0959-3780(01)00007-3.

  16. Lyon, J. G., Yuan, D., Lunetta, R. S., & Elvidge, C. D. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64(2), 143–150

    Google Scholar 

  17. Maina, J., de Moel, H., Zinke, J., Madin, J., McClanahan, T., & Vermaat, J. E. (2013). Human deforestation outweighs future climate change impacts of sedimentation on coral reefs. Nature Communications, 4(May), 1–7. doi:10.1038/ncomms2986.

    Google Scholar 

  18. Mas, J.-F. (1999). Monitoring land-cover changes: a comparison of change detection techniques. International Journal of Remote Sensing, 20(1), 139–152. doi:10.1080/014311699213659.

    Article  Google Scholar 

  19. Meinel, G., Neubert, M., Sensing, R., & City, L. (2000). A comparison of segmentation programs for high resolution remote sensing data. Spring, 35(Part B), 1097–1105 Retrieved from

  20. Ministry of Finance and Treasury, Department of National Planning (2011). Infrastructure Map of Maldives, 4th Edition. Malé, Republic of Maldives. Accessed 04 Sept 2016.

  21. Ministry of Planning and National Development (2008). Official Atlas of the Maldives. Malé, Republic of Maldives.

  22. Ministry of Tourism (2006). Tourism Yearbook 2006. Malé, Republic of Maldives. Accessed 04 Sept 2016.

  23. Ministry of Tourism (2007). Maldives third tourism master plan, 2007–2011. Malé, Republic of Maldives. Accessed 04 September 2016.

  24. Ministry of Tourism (2011). Tourism Yearbook 2011. Malé, Republic of Maldives. Accessed 04 Sept 2016.

  25. Ministry of Tourism (2013). Tourism Yearbook 2013. Malé, Republic of Maldives. Accessed 04 Sept 2016.

  26. Ministry of Tourism (2014). Tourism Yearbook 2014. Malé, Republic of Maldives. Accessed 04 September 2016.

  27. Ministry of Tourism (2015). Tourism Yearbook 2015. Malé, Republic of Maldives. Accessed 04 Sept 2016.

  28. Nascimento, W. R., Souza-Filho, P. W. M., Proisy, C., Lucas, R. M., & Rosenqvist, A. (2013). Mapping changes in the largest continuous Amazonian mangrove belt using object-based classification of multisensor satellite imagery. Estuarine, Coastal and Shelf Science, 117, 83–93. doi:10.1016/j.ecss.2012.10.005.

    Article  Google Scholar 

  29. Naseer, A., & Hatcher, B. G. (2004). Inventory of the Maldives’ coral reefs using morphometrics generated from Landsat ETM+ imagery. Coral Reefs, 23(1), 161–168. doi:10.1007/s00338-003-0366-6.

    Article  Google Scholar 

  30. Pichon, M., & Benzoni, F. (2007). Taxonomic re-appraisal of zooxanthellate Scleractinian Corals in the Maldive Archipelago. Zootaxa, 1441, 21–33.

    Article  Google Scholar 

  31. Rajasuriya, A., Zahir, H., Venkataraman, K., Islam, Z., & Tamelander, J. (2004). Status of coral reefs in South Asia: Bangladesh, Chagos, India, Maldives and Sri Lanka. Status of Coral Reefs of the World: 2004 (pp. 213–233) Volume 1., (November).

  32. Rau, G. H., McLeod, E. L., & Hoegh-Guldberg, O. (2012). The need for new ocean conservation strategies in a high-carbon dioxide world. Nature Climate Change, 2(10), 720–724. doi:10.1038/nclimate1555.

    Article  Google Scholar 

  33. Scheyvens, R. (2011). The challenge of sustainable tourism development in the Maldives: understanding the social and political dimensions of sustainability. Asia Pacific Viewpoint, 52(2), 148–164. doi:10.1111/j.1467-8373.2011.01447.x.

    Article  Google Scholar 

  34. Shalaby, A., & Tateishi, R. (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Applied Geography, 27(1), 28–41. doi:10.1016/j.apgeog.2006.09.004.

    Article  Google Scholar 

  35. Singh, A. (1989). Review article: digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing, 10(6), 989–1003. doi:10.1080/01431168908903939.

    Article  Google Scholar 

  36. Turner, B. (1994). Local faces, global flows—the role of land-use and land-cover in global environmental-change. Land Degradation and Rehabilitation, 5(2), 71–78. doi:10.1002/ldr.3400050204.

    Article  Google Scholar 

  37. Were, K. O., Dick, T. B., & Singh, B. R. (2013). Remotely sensing the spatial and temporal land cover changes in eastern Mau forest reserve and Lake Nakuru drainage basin, Kenya. Applied Geography, 41, 75–86. doi:10.1016/j.apgeog.2013.03.017.

    Article  Google Scholar 

  38. Wiedenmann, J., D’Angelo, C., Smith, E. G., Hunt, A. N., Legiret, F.-E., Postle, A. D., & Achterberg, E. P. (2012). Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nature Climate Change, 3(2), 160–164. doi:10.1038/nclimate1661.

    Article  Google Scholar 

  39. Wooldridge, S. A. (2009). Water quality and coral bleaching thresholds: formalising the linkage for the inshore reefs of the Great Barrier Reef, Australia. Marine Pollution Bulletin, 58(5), 745–751. doi:10.1016/j.marpolbul.2008.12.013.

    CAS  Article  Google Scholar 

  40. Zubair, S., Bowen, D., & Elwin, J. (2011). Not quite paradise: inadequacies of environmental impact assessment in the Maldives. Tourism Management, 32(2), 225–234. doi:10.1016/j.tourman.2009.12.007.

    Article  Google Scholar 

Download references


For fieldwork in the Maldives, the authors would like to acknowledge the Ministry of Fisheries and Agricultures and the community of Maghoodhoo, Faafu Atoll. The authors also wish to thank Paola Fiano and Stefano Masier for the support provided in the realization of the LULC map.

Author information



Corresponding author

Correspondence to Luca Fallati.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fallati, L., Savini, A., Sterlacchini, S. et al. Land use and land cover (LULC) of the Republic of the Maldives: first national map and LULC change analysis using remote-sensing data. Environ Monit Assess 189, 417 (2017).

Download citation


  • Republic of the Maldives
  • Land use and land cover (LULC)
  • Remote sensing
  • Change detection
  • Coral reefs