Skip to main content

Advertisement

Log in

Vegetation dynamics in Bishrampur collieries of northern Chhattisgarh, India: eco-restoration and management perspectives

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Phytosociological study in and around reclaimed coal mine site is an essential requirement for judging restoration impact on a disturbed site. Various studies have been aimed towards assessing the impact of different restoration practices on coal mine wastelands. Plantation scheme in a scientific way is the most suitable approach in this context. During the present investigation, an effort have been made to assess the vegetation dynamics through structure, composition, diversity, and forest floor biomass analysis in and around Bishrampur collieries, Sarguja division, northern Chhattisgarh, India. We have tried to develop strategies for eco-restoration and habitat management of the concerned study sites. Four sites were randomly selected in different directions of the study area. We classified the vegetation community of the study sites into various strata on the basis of height. Two hundred forty quadrats were laid down in various directions of the study area to quantify vegetation under different strata. During our investigation, we found eight different tree species representing four families in the different study sites. The density of the various tree species ranged between 40 and 160 individuals ha−1. The density of sapling, seedling, shrub, and herb ranged between 740 and 1620; 2000 and 6000; 1200 and 2000; and 484,000 and 612,000 individuals ha−1, respectively, in different directions. The diversity indices of the tree reflected highest Shannon index value of 1.91. Simpsons index ranged between 0.28 and 0.50, species richness ranged between 0.27 and 0.61, equitability up to 1.44, and Beta diversity ranged between 2.00 and 4.00. Total forest floor biomass ranged between 4.20 and 5.65 t/ha among the study sites. Highest forest floor biomass occurred in the south direction and lowest at east direction. Total forest floor biomass declined by 6.19% in west, 13.10% in north, and 25.66% in east direction, respectively. The mining activities resulted significant damage to natural vegetation and its dynamics. The study indicated that Acacia mangium, Cassia siamea, and Dalbergia sissoo can be recommended for effective eco-restoration of the concerned sites due to cosmopolitan distribution, high regeneration potential, as well as existence in the form of various girth classes with stable population structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aguiar, A. C. F., Bicudo, S. J., Sobrinho, J. R. S. C., Martins, A. L. S., Coelho, K. P., & Moura, E. G. (2010). Nutrient recycling and physical indicators of an alley cropping system in a sandy loam soil in the pre-Amazon region of Brazil. Nutrient Cycling in Agroecosystems, 86, 189–198.

    Article  CAS  Google Scholar 

  • Almas, A. R., Bakken, L. R., & Mulder, J. (2004). Changes in tolerance of soil microbial communities in Zn and Cd contaminated soils. Soil Biol Bioch, 36, 805–813.

    Article  CAS  Google Scholar 

  • Armesto, J. J., Mitchell, J. D., & Villagran, C. (1986). A comparison of spatial pattern of trees in some tropical and temperate forests. Biotropica, 18, 1–11.

    Article  Google Scholar 

  • Bahrami, A., Emadodin, I., Atashi, M.R., & Bork, H.R. (2010). Land-use change and soil degradation: A case study, North of Iran. Agriculture and Biology Journal of N. America, 605.

  • Barker, P. C. J., & Kirk Patrick, J. B. (1994). Phyllocladus asplenifolius: variability in the population structure of the regeneration niche and dispersion pattern in Tasmanian forest. Australian Journal of Botany, 42, 163–190.

    Article  Google Scholar 

  • Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2011). Carbon density and accumulation in woody species of tropical dry forest in India. Forest Ecology and Management, 262, 1576–1588.

    Article  Google Scholar 

  • Connel, J. H., & Oris, E. (1964). The ecological regulation of species diversity. The American Naturalist, 48, 399–414.

    Article  Google Scholar 

  • Corbett, E. A., Anderson, R. C., & Rodgers, C. S. (1996). Prairie revegetation of a strip mine in Illinois: fifteen years after establishment. Restoration Ecology, 4, 346–354.

    Article  Google Scholar 

  • Curtis, J. T., & McIntosh, R. P. (1950). The interrelations of certain analytic and synthetic phytosociological characters. Ecology, 31, 434–455.

    Article  Google Scholar 

  • Dalling, J. W., Hubbel, S. P., & Silvera, K. (1998). Seed dispersal, seedling establishment and gap partitioning among tropical pioneer trees. Journal of Ecology, 86, 674–689.

    Article  Google Scholar 

  • Dezzeo, N., Chacon, N., Sanoja, E., & Picon, G. (2004). Changes in soil properties and vegetation characteristics along a forest savanna gradient in southern Venezuela. Forest Ecology and Management, 200, 183–193.

    Article  Google Scholar 

  • Dhaulkhandi, M., Dobhal, A., Bhatt, S., & Kumar, M. (2008). Community structure and regeneration potential of natural forest site in Gangotri, India. Journal of Basic and Applied Sciences, 4(1), 49–52.

    Google Scholar 

  • Donggan, G., Zhongke, B., Tieliang, S., Hongbo, S., & Wen, Q. (2011). Impacts of coal mining on the aboveground vegetation and soil quality: a case study of Qinxin coal mine in Shanxi province, China. Clean-Soil Air Water, 39(3), 219–225.

    Article  Google Scholar 

  • Eni, D. D., Iwara, A. I., & Offiong, R. A. (2012). Analysis of soil-vegetation interrelationship in a south-southern secondary forest of Nigeria. International Journal of Forestry Research, 2012, 1–8. doi:10.1155/2012/469326.

    Article  Google Scholar 

  • Ghose, M. K. (2004). Effect of opencast mining on soil fertility. J Sci Indust Res, 63, 1006–1009.

    Google Scholar 

  • Gonzalez, R. C., & Gonzalez-Chavez, M. C. A. (2006). Metal accumulation in wild plants surrounding mining wastes: soil and sediment remediation (SSR). Environmental Pollution, 144, 84–92.

    Article  CAS  Google Scholar 

  • Guha, D. (2014). A case study on the effects of coal mining in the environment particularly in relation to soil, water and air causing a socio-economic hazard in Asansol-Raniganj area, India. Int Res J Social Sci., 3(8),39–42.

  • Gupta, B., & Sharma, N. (2015). Plant asemblages alongs an altitudinal gradient in northwest Himalaya. Journal of Forest and Environmental Science, 31(2), 91–108.

    Article  Google Scholar 

  • Harrington, C. A. (1999). Forests planted for ecosystem restoration or conservation. New Forest, 17, 175–190.

    Article  Google Scholar 

  • Hashemi, S. A. (2010). Investigation plant species diversity and physiographical factors in mountain forest in north of Iran. Journal of Forest Science, 26(1), 1–7.

    Google Scholar 

  • Hassan, A., Wahab, R., Alias, M. A., & Salim, R. M. (2007). Growth performance of 9-year-old selected 5 indigenous wood species planted on degraded forest land. International Journal of Agricultural Research, 2, 302–306.

    Article  Google Scholar 

  • Hewit, N., & Kellman, M. (2002). True seed dispersal among forest fragments: dispersal ability and biogeographical controls. Journal of Biogeography, 29(3), 351–363.

    Article  Google Scholar 

  • Hooker, J. D. (1875). Flora of British India Vol. I-VII. England: L. Reeve and Co. Ltd..

    Google Scholar 

  • Hubble, S.P., & Foster, R.B. (1983). Diversity of canopy trees in a neo-tropical forest and implications to conservation. Tropical Rain Forest: Ecol. Manage., (Sutton L.T.C).

  • Jhariya, M. (2014). Effect of forest fire on microbial biomass, storage and sequestration of carbon in a tropical deciduous forest of Chhattisgarh. Ph.D. Thesis, I.G.K.V., Raipur (C.G.), pp. 259.

  • Jhariya, M.K. (2017). Influences of Forest Fire on Forest Floor and Litterfall in Bhoramdeo Wildlife Sanctuary (C.G.), India. Journal of Forest and Environmental Science (In Press).

  • Jhariya, M. K., Bargali, S. S., Swamy, S. L., & Kittur, B. (2012). Vegetational structure, diversity and fuel loads in fire affected areas of tropical dry deciduous forests in Chhattisgarh. Vegetos, 25(1), 210–224.

    Google Scholar 

  • Jhariya, M. K., Bargali, S. S., Swamy, S. L., & Oraon, P. R. (2013). Herbaceous diversity in proposed mining area of Rowghat in Narayanpur District of Chhattisgarh, India. Journal of Plant Development Sciences, 5(4), 385–393.

    Google Scholar 

  • Jhariya, M. K., Bargali, S. S., Swamy, S. L., Kittur, B., Bargali, K., & Pawar, G. V. (2014). Impact of forest fire on biomass and carbon storage pattern of tropical deciduous forests in Bhoramdeo wildlife sanctuary, Chhattisgarh. International Journal of Ecology and Environmental Sciences, 40(1), 57–74.

    Google Scholar 

  • Jhariya, M. K., Kittur, B. H., & Bargali, S. S. (2016). Assessment of herbaceous biomass: a study in Rowghat mining areas (Chhattisgarh), India. Journal of Applied and Natural Science, 8(2), 645–651.

    Google Scholar 

  • Jordan, C.F. (1985). Nutrient cycling in tropical forest ecosystems. Wiley. Chichester. UK. p. 190.

  • Juwarkar, A. A., & Jumbalkar, H. P. (2008). Phytoremedia-tion of coal mine spoil dump through integrated biotechnological approach. Bioresource Technology, 99, 4732–4741.

    Article  CAS  Google Scholar 

  • Khan, M. L., Rai, J. P. N., & Tripathi, R. S. (1987). Population structure of some tree species in disturbed and protected sub-tropical forests of north East India. Acta Oecologica, 8, 247–255.

    Google Scholar 

  • Khumbongmayum, A. D., Khan, M. L., & Tripathi, R. S. (2006). Biodiversity conservation in sacred groves of Manipur, Northeast India: population structure and regeneration status of woody species. Biodiversity and Conservation, 15, 2439–2456.

    Article  Google Scholar 

  • Khurana, P. (2007). Tree layer analysis and regeneration in tropical dry deciduous forest of Hastinapur. Indian Forester, 16(1), 43–50.

    Google Scholar 

  • Kittur, B., Swamy, S. L., Bargali, S. S., & Jhariya, M. K. (2014). Wildland fires and moist deciduous forests of Chhattisgarh, India: divergent component assessment. Journal of Forestry Research, 25(4), 857–866.

    Article  CAS  Google Scholar 

  • Knight, D. H. (1975). A phytosociological analysis of species-rich-tropical forest on Barro Colorado Island, Panama. Ecological Monographs, 45, 259–284.

    Article  Google Scholar 

  • Kumar, J. I. N., Sajish, P. R., Kumar, R. N., & Bhoi, R. K. (2010). Wood and leaf litter decomposition and nutrient release from Tectona grandis linn. F. in a tropical dry deciduous forest of Rajasthan, western India. Journal of Forest Science, 26(1), 17–23.

    CAS  Google Scholar 

  • Kumar, N., Kumar, A., & Singh, M. (2014). Floristic diversity assessment in ecologically restored limestone (building stone) mine near Chechat village, Kota district, Rajasthan. Ecología, 4(1), 16–25.

    Google Scholar 

  • Kumar, A., Jhariya, M. K., & Yadav, D. K. (2015). Community characters of herbaceous species in plantation sites of coal mine. Journal of Plant Development Science, 7(11), 809–814.

    Google Scholar 

  • Kumar, A., Jhariya, M. K., & Yadav, D. K. (2016). Vegetation dynamics in plantation sites of collieries. Nature, Environment and Pollution Technology, 15(4), 1285–1291.

    Google Scholar 

  • Li, P. B., Hu, Z. Q., Wu, J., Zhao, Y. L., & Zang, Z. R. (2006b). Study on model of vegetation rehabilitation technique on coal waste pile. Journal of Shandong Forestry Science and Technology, 4, 13–15.

    Google Scholar 

  • Magurran, A. E., & Henderson, P. A. (2003). Explaining the excess of rare species in natural species abundance distributions. Nature, 422, 714–716.

    Article  CAS  Google Scholar 

  • Maiti, S. K. (2007). Bioremediation of coalmine overburden dumps with special emphasis in micronutrients and heavy metals accumulation in tree species. Environmental Monitoring and Assessment, 125, 111–122.

    Article  CAS  Google Scholar 

  • Marglef, D. R. (1958). Information theory in ecology. General Systems Yearbook, 3, 36–71.

    Google Scholar 

  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116, 278–283.

    Article  CAS  Google Scholar 

  • Mertens, J., Van Nevel, L., De Schrijver, A., Piesschaert, F., Oosterbean, A., Track, F. M. G., & Verheyen, K. (2007). Tree species effect on the redistribution of soil metals. Environmental Pollution, 149(2), 173–181.

    Article  CAS  Google Scholar 

  • Milder, A.I., Fernandez-Santos, B., & Martinez-Ruiz, C. (2011). Colonization patterns of woody species on lands mined for coal in Spain: Preliminary insights for forest expansion. Land Degradation & Development, DOI: 10.1002/Idr.1101.

  • Mishra, B. P., Tripathi, O. P., & Laloo, R. C. (2005). Community characteristics of a climax subtropical humid forest of Meghalaya and population structure of ten important tree species. Tropical Ecology, 46, 241–251.

    Google Scholar 

  • Mishra, R. K., Upadhyay, V. P., & Mohanty, R. C. (2008). Vegetation ecology of the Similipal Biosphere reserve, Orissa, India. Journal of Applied Ecology and Environmental Research, 6(2), 89–99.

    Article  Google Scholar 

  • Mohapatra, H., & Goswami, S. (2012). Impact of coal mining on soil characteristics around Ib river coalfield, Orissa, India. Journal of Environmental Biology, 33, 751–756.

    Google Scholar 

  • Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forests. Annual Review of Ecology and Systematics, 17, 67–88.

    Article  Google Scholar 

  • Nicholas, O. G., & Nicholas, F. M. (2003). Long-term trends in faunal recolonization after bauxite mining in the jarrah forest of south-western Australia. Restoration Ecology, 11, 261–272.

    Article  Google Scholar 

  • Odum, E. P. (1971). Fundamental of ecology. Philadelphia: Saunders Co..

    Google Scholar 

  • Oraon, P.R. (2012). Structure and dry matter dynamics along the disturbance gradient of tropical dry deciduous forest in Bhoramdeo Wildlife Sanctuary, Chhattisgarh. Ph.D. Thesis, I.G.K.V., Raipur (C.G.).

  • Oraon, P. R., Singh, L., & Jhariya, M. K. (2014). Variations in herbaceous composition of dry tropics following anthropogenic disturbed environment. Current World Environment, 9(3), 967–979.

    Article  Google Scholar 

  • Oraon, P. R., Singh, L., & Jhariya, M. K. (2015). Shrub species divesity in relation to anthropogenic disturbance of Bhoramdeo wildlife sanctuary, Chhattisgarh. Environment and Ecology, 33(2A), 996–1002.

    Google Scholar 

  • Oyun, M. B., Bada, S. O., & Anjah, G. M. (2009). Comparative analysis of the floral composition at the edge and interior of Agulii Forest reserve, Cameroon. Journal of Biological Sciences, 9(5), 431–437.

    Article  Google Scholar 

  • Palit, D., & Banerjee, A. (2013). Species diversity and pedological characteristics in selected sites of Senchal wildlife sanctuary, West Bengal, India. Journal of Environment and Ecology, 4(1), 111–137.

    Article  Google Scholar 

  • Pascal, L. P., & Pellissier, R. (1996). Structure and floristic composition of a tropical Evergreen Forest in south-West India. Journal of Tropical Ecology, 12, 191–210.

    Article  Google Scholar 

  • Pawar, G. V., Singh, L., Sarvade, S., & Lal, C. (2014). Litter production and soil physico-chemical properties influenced by different degraded sites of tropical deciduous forest, Chhattisgarh, India. The Ecoscan, 8(3&4), 349–352.

    Google Scholar 

  • Phillips, E.A. (1959). Methods of vegetation study. Holt R and Winston New York USA. pp. 105.

  • Pielou, E. C. (1966). Species diversity and pattern diversity in the study of ecological succession. Journal of Theoretical Biology, 10, 370–383.

    Article  CAS  Google Scholar 

  • Pullaiah, T. (2006). Encyclopedia of world medicinal plants. New Delhi: Regency publication.

    Google Scholar 

  • Rahman, H., Khan, M. A. S. A., Fardusi, M. J., & Roy, B. (2010). Status, distribution and diversity of invasive forest undergrowth species in the tropics: a study from northeastern Bangladesh. Journal of Forest Science, 26(3), 149–159.

    Google Scholar 

  • Rai, R. K. (2002). Implication of coal mining on environmental in Jaintia Hills, Meghalaya. In P. M. Passah & A. K. Sarma (Eds.), Jaintia Hills, a Meghalaya tribe: Its environment (pp. 113–119). New Delhi: Land and People. Reliance Publishing House.

    Google Scholar 

  • Raunkiaer, C. (1934). The Life Form of Plants and Statistical Plant Geography. Claredon Press ISBN 9978–40–943-2, Oxford.

  • Richards, P. W. (1996). The tropical Rain Forest: an ecological study (2nd ed.). London: Cambridge University Press.

    Google Scholar 

  • Robinson, G. R., & Handel, S. N. (2000). Directing spatial patterns of recruitment during an experimental urban woodland reclamation. Ecological Applications, 10, 174–188.

    Article  Google Scholar 

  • Sadhu, K., Adhikari, K., & Gangopadhyay, A. (2012). Effect of mine spoil on native soil of lower Gondwana coal fields: Raniganj coal mines areas, India. International Journal of Enviromental Sciences, 2(3), 1675–1687.

    CAS  Google Scholar 

  • Sahu, K. P., Singh, L., & Jhariya, M. K. (2013). Fine root biomass, forest floor and nutrient status of soil in an age series of teak plantation in dry tropics. The Bioscan, 8(4), 1149–1152.

    CAS  Google Scholar 

  • Sarma, K., Kushwaha, S. P. S., & Singh, K. J. (2010). Impact of coal mining on plant diversity and tree population structure in Jaintia Hills district of Meghalaya, north East India. New York Science Journal, 3(9), 79–85.

    Google Scholar 

  • Saxena, A. K., & Singh, J. S. (1984). Tree population structure of central Himalayan forest associations and implications concerning their future composition. Vegetatio, 54, 61–69.

    Article  Google Scholar 

  • Scherer-Lorenzen, M., Korner, C., & Schulze, E. D. (2005). Forest diversity and function: temperate and boreal systems (p. 399). Berlin: Springer.

    Book  Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication (323). Urbana: University of Illinois Press.

    Google Scholar 

  • Silver, W. L., Kueppers, L. M., Lugo, A. E., Ostertag, R., & Matzek, V. (2004). Carbon sequestration and plant community dynamics following reforestation of tropical pasture. Ecol. Apli., 14, 1115–1127.

    Article  Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Simpson, G. G. (1964). Species diversity of north American recent mammals. Systematic Zoology, 13, 57–73.

    Article  Google Scholar 

  • Singh, L., & Singh, J. S. (1991). Species structure, dry matter dynamics and carbon flux of a dry tropical forest in India. Annals of Botany, 68, 263–273.

    Article  Google Scholar 

  • Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2004a). Impact of native tree plantations on mine spoil in a dry tropical environment. Forest Ecology and Management, 187, 49–60.

    Article  Google Scholar 

  • Singh, A. N., Raghubanshi, A. S., & Singh, J. S. (2004b). Comparative performance and restoration potential of two Albizia species planted on mine spoil in a dry tropical region, India. Ecological Engineering, 22, 123–140.

    Article  Google Scholar 

  • Singh, A.P., Chowdhury, T. and Gupta, S. (2010). Handbook on weeds of Chhattisgarh. IGKV/pub/2010/06, pp 1–146.

  • Singh, P. K., Imam, A., Singh, R., Singh, D., & Sharma, S. (2013). A study about ecological imbalance in Surguja (India) coalfield area due to mining. Int. Res. J. Environment Sci., 2(4), 10–14.

    CAS  Google Scholar 

  • Singh, R. B. P., Singh, A., & Choudhary, S. K. (2014). Impact of opencast coal mining on the quality of surfacewater, groundwater and vegetation: a case study in Simlong coalfield, Sahibganj, Jharkhand. International Journal on Emergring Technologies, 5(2), 95–105.

    Google Scholar 

  • Sinha, R., Jhariya, M. K., & Yadav, D. K. (2015). Assessment of Sal seedlings and herbaceous flora in the Khairbar plantation of Sarguja Forest division, Chhattisgarh. Current World Environment, 10(1), 330–337.

    Article  Google Scholar 

  • Sizer, N. C., Tanner, E. V. J., & Kossmann Ferraz, I. D. (2000). Edge effects on litterfall mass and nutrient concentrations in forest fragments in Central Amazonia. J. Tropical Ecology, 16, 853–863.

    Article  Google Scholar 

  • Sobuj, N. A., & Rahman, M. (2011). Comparison of plant diversity of natural forest and plantations of Rema-Kalenga wildlife sanctuary of Bangladesh. Journal of Forest Science, 27(3), 127–134.

    Google Scholar 

  • Swain, B. K., Goswami, S., & Das, M. (2011). Impact of mining on soil quality: a case study from Hingula opencast coal mine, Angul district, Orissa. Vistas in Geolo. Res, 10, 77–81.

    Google Scholar 

  • Tom-Dery, D., Dagben, Z. J., & Cobbina, S. J. (2012). Effect of illegal small-scale mining operations on vegetation cover of arid northern Ghana. Research Journal of Environmental and Earth Sciences, 4(6), 674–679.

    CAS  Google Scholar 

  • Tripathi, B. C., Rikhari, H. C., Bargali, S. S., & Rawat, Y. S. (1991). Species composition and regeneration in disturbed forest sites in the oak zone in and around Nainital. Proceedings of Indian National Science Academy B, 57, 381–390.

    Google Scholar 

  • Vitousek, P. M. (1984). Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology, 65, 285–298.

    Article  CAS  Google Scholar 

  • Wang, J., Borsboom, A. C., & Smith, G. C. (2004). Flora diversity of farm forestry plantations in southeast Queensland. Ecological Management & Restoration, 5, 43–51.

    Article  Google Scholar 

  • Weidelt, H. J. (1988). On the diversity of tree species in tropical Rain Forest Eosystems. Plant Research and Development, 28, 110–125.

    Google Scholar 

  • West, D. C., Shugart Jr., H. H., & Ranney, J. W. (1981). Population structure of forest cover in a large area in the boreal Swedish forest. Forest Science, 27, 701–710.

    Google Scholar 

  • Whiteford, P. B. (1949). Distribution of woodland plants in relation to succession and colonal growth. Ecology, 30, 199–200.

    Article  Google Scholar 

  • Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21, 213–251.

    Article  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.

    Article  CAS  Google Scholar 

  • Xuluc-Tolosaa, F. J., Vester, H. F. M., Ramirez-Marcial, N., Castellanos-Albores, J., & Lawrence, D. (2003). Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management, 174, 401–412.

    Article  Google Scholar 

  • Yadav, R. S., Yadav, B. L., & Chhipa, B. R. (2008). Litter dynamics and soil properties under different treespecies in a semi-arid region of Rajasthan, India. Agroforestry Systems, 73, 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Jhariya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Jhariya, M.K., Yadav, D.K. et al. Vegetation dynamics in Bishrampur collieries of northern Chhattisgarh, India: eco-restoration and management perspectives. Environ Monit Assess 189, 371 (2017). https://doi.org/10.1007/s10661-017-6086-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6086-0

Keywords

Navigation