Skip to main content
Log in

Cytotoxic and genotoxic effects of silver nanoparticle/carboxymethyl cellulose on Allium cepa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Several mutagenic agents may be present in substances released in the environment, which may cause serious environmental impacts. Among these substances, there is a special concern regarding the widespread use of silver nanoparticles (AgNP) in several products due to their widely known bactericidal properties, including in the medical field and the food industry (e.g., active packaging). The assessment of the effects of AgNP released in the environment, having different concentrations, sizes, and being associated or not to other types of materials, including polymers, is therefore essential. In this research, the objective was to evaluate the genotoxic and cytotoxic effects of AgNP (size range between 2 and 8 nm) on root meristematic cells of Allium cepa (A. cepa). Tests were carried out in the presence of colloidal solution of AgNP and AgNP mixed with carboxymethylcellulose (CMC), using distinct concentrations of AgNP. As a result, when compared to control samples, AgNP induced a mitotic index decrease and an increase of chromosomal aberration number for two studied concentrations. When AgNP was in the presence of CMC, no cytotoxic potential was verified, but only the genotoxic potential for AgNP dispersion having concentration of 12.4 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Mitotic index is the percentage of cells found in one of the four mitosis phases.

  2. Relative mitotic index indicates alterations observed in root growth induced by the tested substance (or material) compared to the negative control.

References

  • Anacleto, L. R., Roberto, M. M., & Marin-Morales, M. A. (2017). Toxicological effects of the waste of the sugarcane industry, used as agricultural fertilizer, on the test system Allium cepa. Chemosphere, 173, 31–42.

    Article  CAS  Google Scholar 

  • Barberio, A. (2013). Bioassays with plants in the monitoring of water quality. In W. Elshorbagy (Ed.), Water treatment (pp. 317–334). doi:10.5772/50546.Intech.Available from http://www.intechopen.com/books/water-treatment/bioassays-with-plants-in-the-monitoring-of-water-quality.

    Google Scholar 

  • Becaro, A. A., Jonsson, C. M., Puti, F. C., Siqueira, M. C., Mattoso, L. H. C., Correa, D. S., Ferreira, M. D. (2015). Toxicity of PVAstabilized silver nanoparticles to algae and microcrustaceans. Environmental Nanotechnology, Monitoring & Management, 3, 22–29. doi:10.1016/j.enmm.2014.11.002.

  • Becaro, A. A., Puti, F. C., Correa, D. S., Paris, E. C., Marconcini, J. M., & Ferreira, M. D. (2015). Polyethylene films containing silver nanoparticles for applications in food packaging: characterization of physico-chemical and anti-microbial properties. Journal of Nanoscience and Nanotechnology, 15, 2148–2156.

    Article  CAS  Google Scholar 

  • Becaro, A. A., Puti, F. C., Panosso, A. R., Gern, J. C., Brandão, H. M., Correa, D. S., & Ferreira, M. D. (2016). Postharvest quality of fresh-cut carrots packaged in plastic films containing silver nanoparticles. Food and Bioprocess Technology, 9, 637–649.

    Article  CAS  Google Scholar 

  • Belcavello, L., Cunha, M. R. H., Andrade, M. A., & Batitucci, M. D. C. P. (2012). Citotoxicidade e danos ao DNA induzidos pelo extrato de Zornia diphylla, uma planta medicinal. Natureza on line, 10(3), 140–145.

    Google Scholar 

  • Caritá, R., & Marin-Morales, M. A. (2008). Induction of chromosome aberrations in the Allium cepa test system caused by the exposure of seeds to industrial effluents contaminated with azo dyes. Chemosphere, 72, 722–725.

    Article  Google Scholar 

  • Christofoletti, C. A., Pedro-Escher, J., & Fontanetti, C. S. (2013). Assessment of the genotoxicity of two agricultural residues after processing by diplopods using the Allium cepa assay. Water, Air, and Soil Pollution, 224, 1523.

    Article  Google Scholar 

  • Cuicai, R., Yuan, L., & Jinling, L. (1992). Application of micronuclues test in Vicia faba root tips in the rapid detection of mutagenic environmental pollutants. Environmental Science, 4, 15.

    Google Scholar 

  • Cvjetko, P., Milošića, A., Domijan, A.-M., Vrčekc, I. V., Tolićd, S., Štefanića, P. P., Letofsky-Papste, I., Tkaleca, M., & Balena, B. (2017). Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicology and Environmental Safety, 137, 18–28.

    Article  CAS  Google Scholar 

  • De Campos Ventura, B., De Angelis, D. D. F., & Marin-Morales, M. A. (2008). Mutagenic and genotoxic effects of the Atrazine herbicide in Oreochromis niloticus (Perciformes, Cichlidae) detected by the micronuclei test and the comet assay. Pesticide Biochemistry and Physiology, 90(1), 42–51.

    Article  Google Scholar 

  • Deng, F., Wang, S., & Xin, H. (2016). Toxicity of CuO nanoparticles to structure and metabolic activity of Allium cepa root tips. Bulletin of Environmental Contamination and Toxicology, 97, 702–708.

    Article  CAS  Google Scholar 

  • Derbalah, A. S., Elkot, G. A. E., & Hamza, A. M. (2011). Laboratory evaluation of botanical extracts, microbial culture filtrates and silver nanoparticles against Botrytis cinerea. Annales de Microbiologie. doi:10.1007/s13213-011-0388-1.

  • Fenech, M. (2000). The in vitro micronucleus technique. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455(1), 81–95.

    Article  CAS  Google Scholar 

  • Fernandes, T. C., Mazzeo, D. E. C., & Marin-Morales, M. A. (2007). Mechanism of micronuclei formation in polyploidizated cells of Allium cepa exposed to trifluralin herbicide. Pesticide Biochemistry and Physiology, 88(3), 252–259.

    Article  CAS  Google Scholar 

  • Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99–112.

  • Fiskejo, G. (1993). Allium test I: a 2–3 day plant test for toxicity assessment by measuring the mean root growth of onions (Allium cepa L.) Environmental Toxicology and Water Quality, 8(4), 461–470.

    Article  Google Scholar 

  • Gambardella, C., Aluigi, M. G., Fernando, S., Gallus, L., Ramoino, P., Gatti, A. M., Rottigni, M., & Falugi, C. (2013). Developmental abnormalities and changes in cholinesterase activity in sea urchin embryos and larvae from sperm exposed to engineered nanoparticles. Aquatic Toxicology, 130, 77–85.

    Article  Google Scholar 

  • Hebeish, A., Hashem, M., El-hady, M. M. A., & Sharaf, S. (2013). Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydrate Polymers, 92, 407–413.

    Article  CAS  Google Scholar 

  • Juchimiuk, J., & Maluszynska, J. (2005). Transformed roots of Crepis capillaries—a sensitive system for the evaluation of the clastogenicity of abiotic agents. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 565(2), 129–138.

    Article  CAS  Google Scholar 

  • Kanmani, P., & Rhim, J.-W. (2014). Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids, 35, 644–652.

    Article  CAS  Google Scholar 

  • Kirsch-Volders, M., Vanhauwaert, A., De Boeck, M., & Decordier, I. (2002). Importance of detecting numerical versus structural chromosome aberrations. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 504(1), 137–148.

    Article  CAS  Google Scholar 

  • Kumari, M., Mukherjee, A., & Chandrasekaran, N. (2009). Genotoxicity of silver nanoparticles in Allium cepa. Science of the Total Environment, 407(19), 5243–5246.

    Article  CAS  Google Scholar 

  • Kumari, M., Khan, S. S., Pakrashi, S., Mukherjee, A., & Chandrasekaran, N. (2011). Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Journal of Hazardous Materials, 190(1), 613–621.

    Article  CAS  Google Scholar 

  • Kuriyama, R., & Sakai, H. (1974). Role of tubulin-Sh groups in polymerization to microtubules functional-Sh groups in tubulin for polymerization. Journal of Biochemistry, 76(3), 651–654.

    Article  CAS  Google Scholar 

  • Leme, D. M., & Marin-Morales, M. A. (2008). Chromosome aberration and micronucleus frequencies in Allium cepa cells exposed to petroleum polluted water—a case study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 650(1), 80–86.

    Article  CAS  Google Scholar 

  • Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: a review on its application. Mutation Research, 682, 71–81.

    Article  CAS  Google Scholar 

  • Lima, R., Feitosa, L. O., Maruyama, C. R., Barga, M., Yamawaki, P. C., Vieira, I. J., Teixeira, E. M., Correa, A. C., Mattoso, L. H. C., & Fracetto, L. F. (2012). Evaluation of the genotoxicity of cellulose nanofibers. International Journal of Nanomedicine, 7, 3555–3565.

    Article  Google Scholar 

  • Lima, R., Feitosa, L. O., Ballottin, D., Marcato, P. D., Tasic, L., & Durán, N. (2013). Cytotoxicity and genotoxicity of biogenic silver nanoparticles (pp. 1–7). Conference Series: Journal of Physics.

    Google Scholar 

  • Ma, T.-H., Xu, Z., Xu, C., McConnell, H., Rabago, E. V., Arreola, G. A., & Zhang, H. (1995). The improved Allium/Vicia root tip micronucleus assay for clastogenicity of environmental pollutants. Mutation Research/Environmental Mutagenesis and Related Subjects, 334(2), 185–195.

    Article  CAS  Google Scholar 

  • Macleod, R. (1969). Some effects of 2, 4, 5-trichlorophenoxyacetic acid on the mitotic cycle of lateral root apical meristems of Vicia faba. Chromosoma, 27(3), 327–337.

    Article  Google Scholar 

  • Marcano, L., Carruyo, I., Del Campo, A., & Montiel, X. (2004). Cytotoxicity and mode of action of maleic hydrazide in root tips of Allium cepa L. Environmental Research, 94(2), 221–226.

    Article  CAS  Google Scholar 

  • Marsh, K., & Bugusu, B. (2007). Food packaging—roles, materials, and environmental issues. Journal of Food Science, 72(3), 39–55.

    Article  Google Scholar 

  • Mateuca, R., Lombaert, N., Aka, P. V., Decordier, I., & Kirsch-Volders, M. (2006). Chromosomal changes: induction, detection methods and applicability in human biomonitoring. Biochimie, 88(11), 1515–1531.

    Article  CAS  Google Scholar 

  • Mayachiew, P., & Devahastin, S. (2010). Effects of drying methods and conditions on release characteristics of edible chitosan films enriched with Indian gooseberry extract. Food Chemistry, 118(3), 594–601.

    Article  CAS  Google Scholar 

  • Mazzeo, D. E. C., Fernandes, T. C. C., Levy, C. E., Fontanetti, C. S., & Marin-Morales, M. A. (2015). Monitoring the natural attenuation of a sewage sludge toxicity usingthe Allium cepa test. Ecological Indicators, 56, 60–69.

    Article  CAS  Google Scholar 

  • Mbhele, Z. H., Salemane, M. G., Sittert, C. G., Nedeljkovic, J. M., Djokovic, V., & Luyt, A. S. (2003). Fabrication and characterization of silverpolyvinyl alcohol nanocomposites. Chemistry of Materials, 15(26), 5019–5024.

    Article  CAS  Google Scholar 

  • Moura, M. R., Lorevice, M. V., Mattoso, L. H. C., & Zucolotto, V. (2011). Highly stable, edible cellulose films incorporating chitosan nanoparticles. Journal of Food Science, 76(2), 25–29.

    Article  Google Scholar 

  • Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., & Kumar, D. S. (2010). Nanoparticulate material delivery to plants. Plant Science, 179(3), 154–163.

    Article  CAS  Google Scholar 

  • Navabpour, S., Morris, K., Allen, R., Harrison, E., A-H-Mackerness, S. A., & Wollaston, V. B. (2003). Expression of senescence-enhanced genes in response to oxidative stress. Journal of Experimental Botany, 54(391), 2285–2292.

    Article  CAS  Google Scholar 

  • Neto, E. A. B., Ribeiro, C., & Zucolotto, V. (2008). Sintese de Nanoparticulas de Prata para Aplicacao na Sanitizacao de Embalagens. Comunicado Tecnico, Sao Carlos, 1, 1–4.

    Google Scholar 

  • Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P. T., Raichur, A. M., Chandrasekaran, N., & Mukherjee, A. (2014). In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PloS One, 9(2), e87789.

    Article  Google Scholar 

  • Panda, K. K., Aachary, V. M. M., Krishnaveni, R., Padhj, B. K., Sarangi, S. N., Sahu, S. N., & Panda, B. B. (2011). In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicology In Vitro, 25(5), 1097–1105.

    Article  CAS  Google Scholar 

  • Park, M. V., Neigh, A. M., Vermeulen, J. P., de la Fonteyne, L. J., Verharen, H. W., Briedé, J. J., van Loveren, H., & de Jong, W. H. (2011). The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32(36), 9810–9817.

    Article  CAS  Google Scholar 

  • Patlolla, A. K., Berry, A., May, L., & Tchounwou, P. B. (2012). Genotoxicity of silver nanoparticles in Vicia faba: a pilot study on the environmental monitoring of nanoparticles. International Journal of Environmental Research and Public Health, 9(5), 1649–1662.

    Article  CAS  Google Scholar 

  • Pulate, P. V., Ghurde, M. U., & Deshmukh, V. R. (2011). Cytological effect of the biological and chemical silver nanoparticle in Allium cepa. International Journal of Innovations in Bio-Sciences, 1, 32–35.

    Google Scholar 

  • Qin, R., Ning, C., Björn, L. O., & Li, S. (2016). Proteomic analysis of Allium cepa var. agrogarum L. roots under copper stress. Plant and Soil, 401, 197–212.

    Article  CAS  Google Scholar 

  • Rajeshwari, A., Roy, B., Chandrasekaran, N., & Mukherjee, A. (2016). Cytogenetic evaluation of gold nanorods using Allium cepa test. Plant Physiology and Biochemistry, 109, 209–219.

    Article  CAS  Google Scholar 

  • Rodríguez, Y. A., Christofoletti, C. A., Pedro, J., Bueno, O. C., Malaspina, O., Ferreira, R. A. C., & Fontanetti, C. S. (2015). Allium cepa and Tradescantia pallida bioassays to evaluate effects of the insecticide imidacloprid. Chemosphere, 120, 438–442.

    Article  Google Scholar 

  • Satapathy, R., & Swamy, P. (2013). Preparative isolation of flavonoids 515 from Wattakaka volubilis (linn. f.) leaf extracts and its role as 516 antimitotic and antiproliferating agent. International Journal of Pharma and Bio Sciences, 4, 517(3), 454–460.

    Google Scholar 

  • Shin, S.-H., Kim, S.-J., Lee, S.-H., Park, K.-M., & Han, J. (2014). Apple peel and carboxymethylcellulose-based nanocomposite films containing different nanoclays. Journal of Food Science, 79, 342–353.

    Article  Google Scholar 

  • Siqueira, M. C., Coelho, G. F., Moura, M. R., Bresolin, J. D., Hubinger, S. Z., Marconcini, J. M., & Mattoso, L. H. C. (2014). Evaluation of antimicrobial activity of silver nanoparticles for carboxymethylcellulose film applications in food packaging. Journal of Nanoscience and Nanotechnology, 14, 5512–5517.

    Article  CAS  Google Scholar 

  • Sobeh, S.S., Kheiralla, Z.M.H., Rushdy, A.A. & Yakob, N.A.N. (2016). In vitro and in vivo genotoxicity and molecular response of silver nanoparticles on different biological model systems. 69(2), 147–161.

  • Stampoulis, D., Sinha, S. K., & White, J. C. (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science & Technology, 43(24), 9473–9479.

    Article  CAS  Google Scholar 

  • Su, C.-K., Liu, H.-T., Hsia, S.-C., & Sun, Y.-C. (2014). Quantitatively profiling the dissolution and redistribution of silver nanoparticles in living rats using a knotted reactor-based differentiation scheme. Analytical Chemistry, 86, 8267–8274.

    Article  CAS  Google Scholar 

  • Turkoglu, S. (2012). Determination of genotoxic effect s of chlorfenvinphos and fenbuconazole in Allium cepa root cells by mitotic activity, chromosome aberrantion, DNA content, and comet assay. Pesticide Biochemistry and Physiology, 103, 224–230.

    Article  CAS  Google Scholar 

  • Vargasa, J. T., Rodríguez-Monroya, M., Meyerc, M. L., Montes-Belmontb, R., & Sepúlveda-Jiméneza, G. (2017). Trichoderma asperellum ameliorates phytotoxic effects of copper in onion (Allium cepa L.) Environmental and Experimental Botany, 136, 85–93.

    Article  Google Scholar 

  • Webster, P., & Davidson, D. (1969). Changes in the duration of the mitotic cycle induced by colchicine and indol-3yl-acetic acid in Vicia faba roots. Journal of Experimental Botany, 20(3), 671–685.

    Article  CAS  Google Scholar 

  • White, P. A., & Claxton, L. D. (2004). Mutagens in contaminated soil: a review. Mutation Research/Reviews in Mutation Research, 567(2), 227–345.

  • Yu, L., Lu, H., & Liu, Q. (2013). Ultrafine silver nanoparticles with excellent antibacterial efficacy prepared by a handover of vesicle templating to micelle stabilization. Polymer Chemistry, 4, 3448–3452.

    Article  Google Scholar 

  • Zhu, C., Mills, K. D., Ferguson, D. O., Lee, C., Manis, J., Fleming, J., Gao, Y., Morton, C. C., & Alt, F. W. (2002). Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell, 109, 811–821.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge MCTI/SISNANO, CNPq, FAPESP, CAPES, and Embrapa-Rede Agronano for the financial support. The experimental assistance of Dr. Jaqueline Bianchi Ambrósio and Dr. Marcos Arduin is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos David Ferreira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becaro, A.A., Siqueira, M.C., Puti, F.C. et al. Cytotoxic and genotoxic effects of silver nanoparticle/carboxymethyl cellulose on Allium cepa . Environ Monit Assess 189, 352 (2017). https://doi.org/10.1007/s10661-017-6062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6062-8

Keywords

Navigation