Skip to main content
Log in

Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82–90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., & Gumley, L. E. (1998). Discriminating clear sky from clouds with MODIS. Journal of Geophysical Research—Atmosphere, 103(D24), 32141–32157. doi:10.1029/1998JD200032.

    Article  Google Scholar 

  • Azmi, S., Agarwadkar, Y., Bhattacharya, M., Apte, M., & Inamdar, A. B. (2015). Monitoring and trend mapping of sea surface temperature (SST) from MODIS data: a case study of Mumbai coast. Environmental Monitoring and Assessment, 187(4), 165–165. doi:10.1007/s10661-015-4386-9.

    Article  Google Scholar 

  • Barnes, B. B., & Hu, C. (2013). A hybrid cloud detection algorithm to improved MODIS sea surface temperature data quality and coverage over the Eastern Gulf of Mexico. IEEE Transactions on Geoscience and Remote Sensing, 51(6), 3273–3285. doi:10.1109/TGRS.2012.2223217.

    Article  Google Scholar 

  • Barnes, B. B., Hu, C., & Muller-Karger, F. (2011). An improved high-resolution SST climatology to assess cold water events off Florida. IEEE Geoscience and Remote Sensing Letters, 8(4), 769–773. doi:10.1109/LGRS.2011.2111353.

    Article  Google Scholar 

  • Brown, O. B., & Minnett, P. J. (1999). MODIS infrared sea surface temperature algorithm. Florida: University of Miami.

    Google Scholar 

  • Chau, K. (2006). A review on the integration of artificial intelligence into coastal modeling. Journal of Environmental Management, 80(1), 47–57.

    Article  Google Scholar 

  • Chavula, G., Brezonik, P., Thenkabail, P., Johnson, T., & Bauer, M. (2009). Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery. Physics and Chemistry of the Earth, 34(13–16), 749–754. doi:10.1016/j.pce.2009.08.001.

    Article  Google Scholar 

  • Delgado, A. L., Jamet, C., Loisel, H., Vantrepotte, V., Perillo, G. M. E., & Piccolo, M. C. (2014). Evaluation of the MODIS-Aqua Sea-Surface Temperature product in the inner and mid-shelves of southwest Buenos Aires Province, Argentina. International Journal of Remote Sensing, 35(1), 306–320. doi:10.1080/01431161.2013.870680.

    Article  Google Scholar 

  • Franz, B. (2006). Implementation of SST processing within the OBPG. Washington, DC: NASA.

    Google Scholar 

  • Gentemann, C. L. (2014). Three way validation of MODIS and AMSR-E sea surface temperatures. Journal of Geophysical Research, 119(4), 2583–2598. doi:10.1002/2013JC009716.

    Google Scholar 

  • Heidinger, A. K., Anne, V. R., & Dean, C. (2002). Using MODIS to estimate cloud contamination of the AVHRR data record. Journal of Atmospheric and Oceanic Technology, 19(5), 586–601. doi:10.1175/1520-0426(2002)019<0586:UMTECC>2.0.CO;2.

    Article  Google Scholar 

  • Hosoda, K. H., & Qin. (2011). Algorithm for estimating sea surface temperatures based on Aqua/MODIS global ocean data. 1. Development and validation of the algorithm. Journal of Oceanograph, 67(1), 135–145. doi:10.1007/s10872-011-0007-6.

    Article  Google Scholar 

  • Hu, C., Muller-Karger, F., Murch, B., Myhre, D., Taylor, J., Luerssen, R., Moses, C., Zhang, C. Y., Gramer, L., & Hendee, J. (2009). Building an automated integrated observing system to detect sea surface temperature anomaly events in the Florida Keys. IEEE Transactions on Geoscience and Remote Sensing, 47(6), 1607–1620. doi:10.1109/TGRS.2009.2024992.

    Article  Google Scholar 

  • Kilpatrick, K. A., Podesta, G. P., & Evans, R. (2001). Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. Journal of Geophysical Research-Oceans, 106(C5), 9179–9197.

    Article  Google Scholar 

  • Kozlov, I., Dailidiene, I., Korosov, A., Klemas, V., & Mingelaite, T. (2014). MODIS-based sea surface temperature of the Baltic Sea Curonian Lagoon. Journal of Marine Systems, 129, 157–165. doi:10.1016/j.jmarsys.2012.05.011.

    Article  Google Scholar 

  • Li, X., Pichel, W. G., Clemente-Colon, P., Krasnopolsky, V. M., & Sapper, J. (2001). Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. Journal of Remote Sensing, 22(7), 1285–1303. doi:10.1080/01431160151144350.

    Article  Google Scholar 

  • Liang, X., & Ignatov, A. (2013). AVHRR, MODIS, and VIIRS radiometric stability and consistency in SST bands. Journal of Geophysical Research, 118(6), 3161–3171. doi:10.1002/jgrc.20205.

    Google Scholar 

  • Mao, Z., Chen, J., Hao, Z., Pan, D., Tao, B., & Zhu, Q. (2013). A new approach to estimate the aerosol scattering ratios for the atmospheric correction of satellite remote sensing data in coastal regions. Remote Sensing of Environment, 132, 186–194. doi:10.1016/j.rse.2013.01.015.

    Article  Google Scholar 

  • McClain, E. P., Pichel, W. G., Walton, C. C., Ahmad, Z., & Sutton, J. (1982). Multi-channel improvements to satellite-derived global sea surface temperatures. Advances in Space Research, 2(6), 43–47. doi:10.1016/0273-1177(82)90120-X.

    Article  Google Scholar 

  • McClain, E. P., Pichel, W. G., & Walton, C. C. (1985). Comparative performance of AVHRR-based multichannel sea surface temperatures. Journal of Geophysical Research, 90(C6), 11587–11601. doi:10.1029/JC090iC06p11587.

    Article  Google Scholar 

  • McMillin, L. M. (1975). Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of Geophysical Research, 80(36), 5113–5117. doi:10.1029/JC080i036p05113.

    Article  Google Scholar 

  • Merchant, C. J., Harris, A. R., Maturi, E., & Maccallum, S. (2005). Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval. Quality Journal of the Royal Meteorological Society, 131(611), 2735–2755. doi:10.1256/qj.05.15.

    Article  Google Scholar 

  • Minnett, P. J., Evans, R. H., Kearns, E. J., & Brown, O. B. (2002). Sea-surface temperature measured by the Moderate Resolution Imaging Spectroradiometer (MODIS). IEEE IGARSS, 2, 1177–1179. doi:10.1109/IGARSS.2002.1025872.

    Google Scholar 

  • Newman, S. M., Smith, J. A., Glew, M. D., Rogers, S. M., & Taylor, J. P. (2005). Temperature and salinity dependence of sea surface emissivity in the thermal infrared. Quarterly Journal of the Royal Meteorological Society, 131(610), 2539–2557.

    Article  Google Scholar 

  • Niclos, R., Caselles, V., Coll, C., & Valor, E. (2007). Determination of sea surface temperature at large observation angles using an angular and emissivity-dependent split-window equation. Remote Sensing of Environment, 111(1), 107–121. doi:10.1016/j.rse.2007.03.014.

    Article  Google Scholar 

  • Petrenko, B., Ignatov, A., Kihai, Y., Stroup, J., & Dash, P. (2014). Evaluation and selection of SST regression algorithms for JPSS VIIRS. Journal of Geophysical Research, 119(8), 4580–4599. doi:10.1002/2013JD020637.

    Google Scholar 

  • Pichel, W. G. (1991). Operational production of multichannel sea surface temperatures from NOAA polar satellite AVHRR data. Palaeogeography, Palaeoclimatology, Palaeoecology, 90, 173–177. doi:10.1016/0921-8181(91)90088-E.

    Google Scholar 

  • Sobrino, J. A., Kharraz, J. E., & Li, Z. L. (2003). Surface temperature and water vapour retrieval from MODIS data. International Journal of Remote Sensing, 24(24), 5161–5182. doi:10.1080/0143116031000102502.

    Article  Google Scholar 

  • Szczodrak, M., Minnett, P. J., & Evans, R. H. (2014). The effects of anomalous atmospheres on the accuracy of infrared sea-surface temperature retrievals: dry air layer intrusions over the tropical ocean. Remote Sensing of Environment, 140, 450–465. doi:10.1016/j.rse.2013.09.010.

    Article  Google Scholar 

  • Tomazic, I., Kuzmic, M., Notarstefano, G., Mauri, E., & Poulain, P. M. (2011). A comparative assessment of satellite-derived Adriatic Sea surface temperature. International Journal of Remote Sensing, 32(17), 4871–4892. doi:10.1080/01431161.2010.492249.

    Article  Google Scholar 

  • Walton, C. C., Pichel, W. G., Sapper, J. F., & May, D. A. (1998). The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. Journal of Geophysical Research, 103(C12), 27999–28012. doi:10.1029/98JC02370.

    Article  Google Scholar 

  • Wang, J., & Deng, Z. (2012). Detection and forecasting of oyster norovirus outbreaks: recent advances and future perspectives. Marine Environmental Research, 80, 62–69. doi:10.1016/j.marenvres.2012.06.011.

    Article  CAS  Google Scholar 

  • Wang, J., & Deng, Z. (2016). Modeling and prediction of oyster norovirus outbreaks along Gulf of Mexico Coast. Environmental Health and Perspectives. Advance online publication. doi:10.1289/ehp.1509764.

Download references

Acknowledgements

This work was supported by the US National Aeronautics and Space Administration (NASA) under award No. NNX14AR15G. The authors would like to thank NASA’s OceanColor Web and LAADS Web for providing the MODIS level 2 imagery and US Geological Survey (USGS) observation stations and World Ocean Database (WOD) for providing in situ data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Deng, Z. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters. Environ Monit Assess 189, 286 (2017). https://doi.org/10.1007/s10661-017-6010-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-6010-7

Keywords

Navigation