Presence of pesticide residues on produce cultivated in Suriname

  • F. Abdoel Wahid
  • J. Wickliffe
  • M. Wilson
  • A. Van Sauers
  • N. Bond
  • W. Hawkins
  • D. Mans
  • M. Lichtveld
Article

Abstract

Agricultural pesticides are widely used in Suriname, an upper middle-income Caribbean country located in South America. Suriname imported 1.8 million kg of agricultural pesticides in 2015. So far, however, national monitoring of pesticides in crops is absent. Reports from the Netherlands on imported Surinamese produce from 2010 to 2015 consistently showed that samples exceeded plant-specific pesticide maximum residue limits (MRLs) of the European Union (EU). Consumption of produce containing unsafe levels of pesticide residues can cause neurological disorders, and particularly, pregnant women and children may be vulnerable. This pilot study assessed the presence of pesticide residues in commonly consumed produce items cultivated in Suriname. Thirty-two insecticides (organophosphates, organochlorines, carbamates, and pyrethroids) and 12 fungicides were evaluated for their levels in nine types of produce. Pesticide residue levels exceeding MRLs in this study regarded cypermethrin (0.32 μg/g) in tomatoes (USA MRL 0.20 μg/g), lambda-cyhalothrin (1.08 μg/g) in Chinese cabbage (USA MRL 0.40 μg/g), endosulfan (0.07 μg/g) in tannia (EU MRL 0.05 μg/g), and lindane (0.02 and 0.03 μg/g, respectively) in tannia (EU MRL 0.01 μg/g). While only a few pesticide residues were detected in this small pilot study, these residues included two widely banned pesticides (endosulfan and lindane). There is a need to address environmental policy gaps. A more comprehensive sampling and analysis of produce from Suriname is warranted to better understand the scope of the problem. Preliminary assessments, using intake rate, hazard quotient, and level of concern showed that it is unlikely that daily consumption of tannia leads to adverse health effects.

Keywords

Pesticides Agricultural crops Pesticide residues Environmental monitoring Food safety Health policy 

References

  1. ABS. (2013). Resultaten achtste volks-en woningtelling in Suriname (volume 1) demografische en sociale karakteristieken en migratie. (). Paramaribo, Suriname: Algemeen Bureau voor de Statistiek—Suriname.Google Scholar
  2. Bajwa, U., & Sandhu, K. S. (2014). Effect of handling and processing on pesticide residues in food—a review. Journal of Food Science and Technology, 51(2), 201–220. doi:10.1007/s13197-011-0499-5.CrossRefGoogle Scholar
  3. Beard, J. D., Umbach, D. M., Hoppin, J. A., Richards, M., Alavanja, M. C., Blair, A., & Kamel, F. (2014). Pesticide exposure and depression among male private pesticide applicators in the agricultural health study. Environmental Health Perspectives, 122(9), 984–991. doi:10.1289/ehp.1307450.Google Scholar
  4. Burns, C. J. et al (2013). Pesticide exposure and neurodevelopmental outcomes: review of the epidemiologic and animal studies. Journal of Toxicology and Environmental Health.Part B, Critical Reviews, 16(3–4), 127–283. doi:10.1080/10937404.2013.783383.
  5. Canadian Food Inspection Agency. (2012). Procedures for sampling fresh fruit and vegetables. Retrieved from http://www.inspection.gc.ca/food/fresh-fruits-and-vegetables/food-safety/sampling-fresh-fruit-and-vegetables/eng/1353610539095/1353610619804.
  6. Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science & Policy, 9(7–8), 685–692. doi:10.1016/j.envsci.2006.08.002.CrossRefGoogle Scholar
  7. CDC. (2005). ATSDR—PHA guidance manual—chapter 6: exposure evaluation: evaluating exposure pathways. Retrieved from http://www.atsdr.cdc.gov/hac/PHAManual/ch6.html#6.2.
  8. De Nationale Assemblee van de Republiek Suriname. (n.d.). Bestrijdingsmiddelenwet. Retrieved from http://www.dna.sr/wetgeving/surinaamse-wetten/geldende-teksten-tm-2005/bestrijdingsmiddelenwet/.
  9. Derlagen, C., et al (2013). Agricultural sector support in Suriname. Rome: IDB/FAO.Google Scholar
  10. FAO. (1999). Recommended methods of sampling for the determination of pesticide residues for compliance with MRLs. Rome, Italy: FAO.Google Scholar
  11. FAO. (2008). Good agricultural practices. Retrieved from http://www.fao.org/prods/gap/.
  12. FAO. (n.d.). Codex maximum residue limits for pesticides. Retrieved from http://www.fao.org/waicent/faostat/Pest-Residue/pest-e.htm.
  13. FAO, & WHO. (2009). In Sheffer M. (Ed.), Principles and methods for the risk assessment of chemicals in food. Geneva, Switzerland: WHO.Google Scholar
  14. Global MRL Database. (2016). Global MRL database. Retrieved from https://www.globalmrl.com/db#query.
  15. Harley, K. G., Huen, K., Aguilar Schall, R., Holland, N. T., Bradman, A., Barr, D. B., & Eskenazi, B. (2011). Association of organophosphate pesticide exposure and paraoxonase with birth outcome in Mexican-American women. PloS One, 6(8), e23923. doi:10.1371/journal.pone.0023923.CrossRefGoogle Scholar
  16. Hornung, R. W., & Reed, L. D. (1990). Estimation of average concentration in the presence of nondetectable values. Applied Occupational and Environmental Hygiene, 5(1), 46–51. doi:10.1080/1047322X.1990.10389587.CrossRefGoogle Scholar
  17. IRIS US EPA. (1987). Gamma-hexachlorocyclohexane (gamma-HCH); CASRN 58-89-9. Washington DC, United States of America: U.S. Environmental Protection Agency.Google Scholar
  18. IRIS US EPA. (1994). Endosulfan; CASRN 115-29-7. Washington DC, United States of America: U.S Environmental Protection Agency.Google Scholar
  19. Keikotlhaile, B. M. et al (2010). Effects of food processing on pesticide residues in fruits and vegetables: a meta-analysis approach. Food and Chemical Toxicology, 48(1), 1–6. doi:10.1016/j.fct.2009.10.031.
  20. London, L., Beseler, C., Bouchard, M. F., Bellinger, D. C., Colosio, C., Grandjean, P., & Stallones, L. (2012). Neurobehavioral and neurodevelopmental effects of pesticide exposures. Neurotoxicology, 33(4), 887–896. doi:10.1016/j.neuro.2012.01.004.CrossRefGoogle Scholar
  21. Mahabali, S., & Spanoghe, P. (2015). Risk assessment of pesticide usage by farmers in Commewijne, Suriname, South America: a pilot study for the Alkmaar and Tamanredjo regions. Environmental Monitoring and Assessment, 187(3), 153. doi:10.1007/s10661-015-4363-3.CrossRefGoogle Scholar
  22. Ministry of Agriculture, Animal Husbandry and Fisheries. (2013). The national agricultural innovation of the republic of Suriname. (). Paramaribo, Suriname: Ministry of Agriculture, Animal Husbandry and Fisheries.Google Scholar
  23. Ministry of Agriculture, Animal Husbandry and Fisheries. (2014). Bestrijdingsmiddelen import 1993–2013. Unpublished manuscript.Google Scholar
  24. Ministry of Agriculture, Animal Husbandry and Fisheries. (2015a). Beplante arealen, productie en export van groenten. Unpublished manuscript.Google Scholar
  25. Ministry of Agriculture, Animal Husbandry and Fisheries. (2015b). Productie van landbouwgewassen. Unpublished manuscript.Google Scholar
  26. Ministry of Agriculture, Animal Husbandry and Fisheries. (2016). Pesticides import data 2015. Unpublished manuscript.Google Scholar
  27. NIMOS. (2013). Second national communication to the United Nations framework convention on climate change. (). Paramaribo: Ministry of Labour, Technological Development and Environment.Google Scholar
  28. NVWA. (2012). Residuen van gewasbeschermingsmiddelen op groente en fruit: Overzicht van uitkomsten NVWA-inspecties januari 2010–december 2011. (). Utrecht, the Netherlands: Nederlandse Voedsel en Waren Autoriteit Ministerie van Economische Zaken.Google Scholar
  29. NVWA. (2013). Residuen van gewasbeschermingsmiddelen op groente en fruit: Overzicht van uitkomsten NVWA-inspecties juli 2011–juni 2013. (). Utrecht, the Netherlands: Nederlandse Voedsel en Waren Autoriteit Ministerie van Economische Zaken.Google Scholar
  30. NVWA. (2014a). Residuen van gewasbeschermingsmiddelen op groente en fruit: Overzicht van uitkomsten NVWA-inspecties januari 2011–juli 2013. Unpublished manuscript.Google Scholar
  31. NVWA. (2014b). Residuen van gewasbeschermingsmiddelen op groente en fruit: Overzicht van uitkomsten NVWA-inspecties januari 2012–december 2013. (). Utrecht, the Netherlands: Nederlandse Voedsel- en Warenautoriteit Ministerie van Economische Zaken.Google Scholar
  32. NVWA. (2014c). Residuen van gewasbeschermingsmiddelen op groente en fruit: Overzicht van uitkomsten NVWA-inspecties juli 2012–juni 2014. (). Utrecht, the Netherlands: Nederlandse Voedsel- en Warenautoriteit Ministerie van Economische Zaken.Google Scholar
  33. NVWA. (2015). Residuen van gewasbeschermingsmiddelen op groente en fruit: Overzicht van uitkomsten NVWA-inspecties juli 2013–juni 2015. (). Utrecht, the Netherlands: Nederlandse Voedsel en Waren Autoriteit Ministerie van Economische Zaken.Google Scholar
  34. Stockholm Convention. (2015). Text of the convention. Retrieved from http://chm.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx.
  35. US EPA. (1991). Chemical concentration data near the detection limit. USA: U.S. Environmental Protection Agency.Google Scholar
  36. US EPA. (2009). Persistent organic pollutants: a global issue, a global response. Retrieved from https://www.epa.gov/international-cooperation/persistent-organic-pollutants-global-issue-global-response.
  37. US EPA. (2016a). Setting tolerances for pesticide residues in foods. Retrieved from https://www.epa.gov/pesticide-tolerances/setting-tolerances-pesticide-residues-foods.
  38. US EPA. (2016b). SW-846 test method 8081-B: organochlorine pesticides by gas chromatography. Retrieved from https://www.epa.gov/hw-sw846/sw-846-test-method-8081b-organochlorine-pesticides-gas-chromatography.
  39. US EPA. (2017). Exposures factors handbook 2011 edition (final report). Retrieved from https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252.
  40. US FDA. (1999). In Makovi C. M., McMahon B. M. (Eds.), Pesticide analytical manual volume I (3rd ed.). USA: U.S. Department of Health and Human Services, Public Health Service Food and Drug Administration.Google Scholar
  41. USDA. (2016). Sampling procedures for pesticide data program. USA: United States Department of Agriculture Agricultural Marketing Service.Google Scholar
  42. Van Sauers, A. (2015). In Abdoel Wahid F. (Ed.), Endosulfan and lindane prohibition in Suriname. Paramaribo, Suriname.Google Scholar
  43. Weber, J., Halsall, C. J., Muir, D., Teixeira, C., Small, J., Solomon, K., & Bidleman, T. (2010). Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the arctic. The Science of the Total Environment, 408(15), 2966–2984. doi:10.1016/j.scitotenv.2009.10.077.CrossRefGoogle Scholar
  44. WHO. (2016). Codex alimentarius: commodities. Retrieved from http://www.fao.org/fao-who-codexalimentarius/standards/pestres/commodities/en/.

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • F. Abdoel Wahid
    • 1
  • J. Wickliffe
    • 1
  • M. Wilson
    • 1
  • A. Van Sauers
    • 2
  • N. Bond
    • 3
  • W. Hawkins
    • 1
  • D. Mans
    • 4
  • M. Lichtveld
    • 1
  1. 1.Department of Global Environmental Health SciencesTulane University School of Public Health and Tropical MedicineNew OrleansUSA
  2. 2.Ministry of Agriculture, Livestock, and FisheriesParamariboSuriname
  3. 3.Agricultural & Environmental Services LaboratoryUniversity of GeorgiaAthensUSA
  4. 4.Faculty of Medical SciencesAnton de Kom University of SurinameParamariboSuriname

Personalised recommendations