Skip to main content

Mapping the spatio-temporal distribution of key vegetation cover properties in lowland river reaches, using digital photography

Abstract

The presence of vegetation in stream ecosystems is highly dynamic in both space and time. A digital photography technique is developed to map aquatic vegetation cover at species level, which has a very high spatial and a flexible temporal resolution. A digital single-lens reflex (DSLR) camera mounted on a handheld telescopic pole is used. The low-altitude (5 m) orthogonal aerial images have a low spectral resolution (red-green-blue), high spatial resolution (∼1.9 pixels cm−2, ∼1.3 cm length) and flexible temporal resolution (monthly). The method is successfully applied in two lowland rivers to quantify four key properties of vegetated rivers: vegetation cover, patch size distribution, biomass and hydraulic resistance. The main advantages are that the method is (i) suitable for continuous and discontinuous vegetation covers, (ii) of very high spatial and flexible temporal resolution, (iii) relatively fast compared to conventional ground survey methods, (iv) non-destructive and (v) relatively cheap and easy to use, and (vi) the software is widely available and similar open source alternatives exist. The study area should be less than 10 m wide, and the prevailing light conditions and water turbidity levels should be sufficient to look into the water. Further improvements of the image processing are expected in the automatic delineation and classification of the vegetation patches.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anker, Y., Hershkovitz, Y., Ben Dor, E., & Gasith, A. (2014). Application of aerial digital photography for macrophyte cover and composition survey in small rural streams. River Research and Applications, 30(7), 925–937.

    Article  Google Scholar 

  2. Apollo Mapping (2016). RapidEye. In: https://apollomapping.com/imagery/medium-resolution-satellite-imagery.

  3. Bal, K. D., & Meire, P. (2009). The influence of macrophyte cutting on the hydraulic resistance of lowland rivers. Journal of Aquatic Plant Management, 47, 65–68.

    Google Scholar 

  4. Bal, K. D., Struyf, E., Vereecken, H., Viaene, P., De Doncker, L., de Deckere, E., Mostaert, F., & Meire, P. (2011). How do macrophyte distribution patterns affect hydraulic resistances? Ecological Engineering, 37(3), 529–533.

    Article  Google Scholar 

  5. Bal, K. D., Van Belleghem, S., De Deckere, E., & Meire, P. (2006). The re-growth capacity of sago pondweed following mechanical cutting. Journal of Aquatic Plant Management, 44, 139–141.

    Google Scholar 

  6. Barrell, J., & Grant, J. (2015). High-resolution, low-altitude aerial photography in physical geography: A case study characterizing eelgrass (Zostera marina L.) and blue mussel (Mytilus edulis L.) landscape mosaic structure. Progress in Physical Geography, 39(4), 440–459.

    Article  Google Scholar 

  7. Battle, J. M., & Mihuc, T. B. (2000). Decomposition dynamics of aquatic macrophytes in the lower Atchafalaya, a large floodplain river. Hydrobiologia, 418, 123–136.

    Article  Google Scholar 

  8. Baumstark, R., Duffey, R., & Pu, R. (2016). Mapping seagrass and colonized hard bottom in Springs Coast, Florida using WorldView-2 satellite imagery. Estuarine, Coastal and Shelf Science, 181, 83–92.

    Article  Google Scholar 

  9. Blanquet, B. (1928). Pflanzensoziologie (1st ed.). Berlin: Grundzüge der Vegegtationskunde.

    Google Scholar 

  10. Borin, M., & Salvato, M. (2012). Effects of five macrophytes on nitrogen remediation and mass balance in wetland mesocosms. Ecological Engineering, 46, 34–42.

    Article  Google Scholar 

  11. Bryson, M., Johnson-Roberson, M., Murphy, R. J., & Bongiorno, D. (2013). Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes. PloS One, 8(9).

  12. Carter, G. A., Knapp, A. K., Anderson, J. E., Hoch, G. A., & Smith, M. D. (2005). Indicators of plant species richness in AVIRIS spectra of a mesic grassland. Remote Sensing of Environment, 98(2–3), 304–316.

    Article  Google Scholar 

  13. Champion, P. D., & Tanner, C. C. (2000). Seasonality of macrophytes and interaction with flow in a New Zealand lowland stream. Hydrobiologia, 441(1–3), 1–12.

    Article  Google Scholar 

  14. Chow, V. T. (1959). Open-channel hydraulics. New York: McGraw-Hill.

    Google Scholar 

  15. Colwell, R. (1960). Manual of photographic interpretation Washington, DC.

  16. Cordova, J. M., Rosi-Marshall, E. J., Tank, J. L., & Lamberti, G. A. (2008). Coarse particulate organic matter transport in low-gradient streams of the Upper Peninsula of Michigan. Journal of the North American Benthological Society, 27(3), 760–771.

    Article  Google Scholar 

  17. De Doncker, L., Troch, P., Verhoeven, R., Bal, K., Desmet, N., & Meire, P. (2009a). Relation between resistance characteristics due to aquatic weed growth and the hydraulic capacity of the river Aa. River Research and Applications, 25(10), 1287–1303.

    Article  Google Scholar 

  18. De Doncker, L., Troch, P., Verhoeven, R., Bal, K., Meire, P., & Quintelier, J. (2009b). Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river. Environmental Fluid Mechanics, 9(5), 549–567.

    Article  Google Scholar 

  19. Dhote, S., & Dixit, S. (2009). Water quality improvement through macrophytes—a review. Environmental Monitoring and Assessment, 152(1–4), 149–153.

    CAS  Article  Google Scholar 

  20. Dinka, M., Agoston-Szabo, E., & Toth, I. (2004). Changes in nutrient and fibre content of decomposing Phragmites australis litter. International Review of Hydrobiology, 89(5–6), 519–535.

    CAS  Article  Google Scholar 

  21. Dronova, I. (2017). Environmental heterogeneity as a bridge between ecosystem service and visual quality objectives in management, planning and design. Landscape and Urban Planning, 163, 90–106.

    Article  Google Scholar 

  22. EU. (2000). 2000/60/EC. A framework for the community action in the field of water policy, or short: The EU Water Framework Directive Directive 2000/60/EC. Brussels: The European Parliament and the European Council of Ministers.

    Google Scholar 

  23. Extence, C. A., Balbi, D. M., & Chadd, R. P. (1999). River flow indexing using British benthic macroinvertebrates: a framework for setting hydroecological objectives. Regulated River, 15(6), 543–574.

    Article  Google Scholar 

  24. Flynn, K. F., & Chapra, S. C. (2014). Remote sensing of submerged aquatic vegetation in a shallow non-turbid river using an unmanned aerial vehicle. Remote Sens-Basel, 6(12), 12815–12836.

    Article  Google Scholar 

  25. Flynn, N. J., Snook, D. L., Wade, A. J., & Jarvie, H. P. (2002). Macrophyte and periphyton dynamics in a UK Cretaceous chalk stream: the River Kennet, a tributary of the Thames. Science of the Total Environment, 282, 143–157.

    Article  Google Scholar 

  26. Franklin, P., Dunbar, M., & Whitehead, P. (2008). Flow controls on lowland river macrophytes: a review. Science of the Total Environment, 400(1–3), 369–378.

    CAS  Article  Google Scholar 

  27. Gibbins, C., Vericat, D., & Batalla, R. J. (2007). When is stream invertebrate drift catastrophic? The role of hydraulics and sediment transport in initiating drift during flood events. Freshwater Biology, 52(12), 2369–2384.

    Article  Google Scholar 

  28. Green, J. C. (2005a). Comparison of blockage factors in modelling the resistance of channels containing submerged macrophytes. River Research and Applications, 21(6), 671–686.

    Article  Google Scholar 

  29. Green, J. C. (2005b). Modelling flow resistance in vegetated streams: review and development of new theory. Hydrological Processes, 19(6), 1245–1259.

    Article  Google Scholar 

  30. Guichard, F., Bourget, E., & Agnard, J. P. (2000). High-resolution remote sensing of intertidal ecosystems: a low-cost technique to link scale-dependent patterns and processes. Limnology and Oceanography, 45(2), 328–338.

    Article  Google Scholar 

  31. Gurnell, A. M., van Oosterhout, M. P., de Vlieger, B., & Goodson, J. M. (2006). Reach-scale interactions between aquatic plants and physical habitat: River Frome, Dorset. River Research and Applications, 22(6), 667–680.

    Article  Google Scholar 

  32. Hardesty, L. (2015). Remowing reflections from photos taken through windows: new algorithm exploits multiple reflections in individual images to distinguish reflection from transmission. In: Massachusetts Institute of Technology.

  33. Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C. K., Heiskanen, A. S., Johnson, R. K., Moe, J., Pont, D., Solheim, A. L., & Van De Bund, W. (2010). The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Science of the Total Environment, 408(19), 4007–4019.

    CAS  Article  Google Scholar 

  34. Hestir, E. L., Khanna, S., Andrew, M. E., Santos, M. J., Viers, J. H., Greenberg, J. A., Rajapakse, S. S., & Ustin, S. L. (2008). Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112(11), 4034–4047.

    Article  Google Scholar 

  35. Horvath, T. G. (2004). Retention of particulate matter by macrophytes in a first-order stream. Aquatic Botany, 78(1), 27–36.

    Article  Google Scholar 

  36. Husson, E., Hagner, O., & Ecke, F. (2014). Unmanned aircraft systems help to map aquatic vegetation. Applied Vegetation Science, 17(3), 567–577.

    Article  Google Scholar 

  37. Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D., Pickup, R., Pinay, G., Robertson, A. L., & Wood, P. J. (2011). Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 4(4), 481–499.

    CAS  Article  Google Scholar 

  38. Laba, M., Blair, B., Downs, R., Monger, B., Philpot, W., Smith, S., Sullivan, P., & Baveye, P. C. (2010). Use of textural measurements to map invasive wetland plants in the Hudson River National Estuarine Research Reserve with IKONOS satellite imagery. Remote Sensing of Environment, 114, 876–886.

    Article  Google Scholar 

  39. Lamberti, G. A., Gregory, S. V., Ashkenas, L. R., Wildman, R. C., & Steinman, A. D. (1989). Influence of channel geomorphology on retention of dissolved and particulate matter in a cascade mountain stream. Us for Serv T R Psw, 110, 33–39.

    Google Scholar 

  40. Legleiter, C. J. (2003). Spectrally driven classification of high spatial resolution, hyperspectral imagery: a tool for mapping in-stream habitat. Environmental Management, 32(3), 399–411.

    Article  Google Scholar 

  41. Lejeune, O., Tlidi, M., & Lefever, R. (2004). Vegetation spots and stripes: dissipative structures in arid landscapes. International Journal of Quantum Chemistry, 98(2), 261–271.

    CAS  Article  Google Scholar 

  42. Lirman, D. & Deangelo, G (2007). Geospatial video monitoring of benthic habitats using the Shallow-Water Positioning System (SWaPS). Oceans-Ieee :1176–1180.

  43. Londo, G. (1976). The decimal scale for releves of permanent quadrats, vol 33.

  44. Madsen, J. D., & Adams, M. S. (1989). The distribution of submerged aquatic macrophyte biomass in a eutrophic stream, Badfish Creek—the effect of environment. Hydrobiologia, 171(2), 111–119.

    Article  Google Scholar 

  45. Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W., & Westlake, D. F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia, 444(1–3), 71–84.

    Article  Google Scholar 

  46. Menendez, M., Hernandez, O., & Comin, F. A. (2003). Seasonal comparisons of leaf processing rates in two Mediterranean rivers with different nutrient availability. Hydrobiologia, 495(1–3), 159–169.

    Article  Google Scholar 

  47. NASA (2016). MODIS, moderate resolution imaging spectroradiometer. In: http://modis.gsfc.nasa.gov.

  48. Newman, M. E. J. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351.

    Article  Google Scholar 

  49. Nezlin, N. P., Kamer, K., & Stein, E. D. (2007). Application of color infrared aerial photography to assess macroalgal distribution in an eutrophic estuary, upper Newport Bay, California. Estuaries and Coast, 30(5), 855–868.

    Article  Google Scholar 

  50. Pekin, B., & Macfarlane, C. (2009). Measurement of crown cover and leaf area index using digital cover photography and its application to remote sensing. Remote Sens-Basel, 1(4), 1298–1320.

    Article  Google Scholar 

  51. R Core Team (2014). R: A language and environment for statistical computing.

  52. Rango, A., Laliberte, A., Havstad, K., Winters, C., Steele, C. & Browning, D. (2010). Rangeland resource assessment, monitoring, and management using unmanned aerial vehicle-based remote sensing. International Geoscience Remote Sensing :608–611.

  53. Rietkerk, M., Dekker, S. C., de Ruiter, P. C., & van de Koppel, J. (2004). Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305(5692), 1926–1929.

    CAS  Article  Google Scholar 

  54. Riis, T., & Biggs, B. J. F. (2003). Hydrologic and hydraulic control of macrophyte establishment and performance in streams. Limnology and Oceanography, 48(4), 1488–1497.

    Article  Google Scholar 

  55. Sand-Jensen, K., Andersen, K., & Andersen, T. (1999). Dynamic properties of recruitment, expansion and mortality of macrophyte patches in streams. International Review of Hydrobiology, 84(5), 497–508.

    Google Scholar 

  56. Satellite Imaging Corporation (2016). Ikonos satellite sensor. In: http://www.satimagingcorp.com/satellite-sensors/ikonos/.

  57. Scanlon, T. M., Caylor, K. K., Levin, S. A., & Rodriguez-Iturbe, I. (2007). Positive feedbacks promote power-law clustering of Kalahari vegetation. Nature, 449(7159), 209–2U4.

    CAS  Article  Google Scholar 

  58. Schoelynck, J., De Groote, T., Bal, K., Vandenbruwaene, W., Meire, P., & Temmerman, S. (2012). Self-organised patchiness and scale-dependent bio-geomorphic feedbacks in aquatic river vegetation. Ecography, 35(8), 760–768.

    Article  Google Scholar 

  59. Seitzinger, S., Harrison, J. A., Bohlke, J. K., Bouwman, A. F., Lowrance, R., Peterson, B., Tobias, C., & Van Drecht, G. (2006). Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications, 16(6), 2064–2090.

    CAS  Article  Google Scholar 

  60. Shuchman, R. A., Sayers, M. J., & Brooks, C. N. (2013). Mapping and monitoring the extent of submerged aquatic vegetation in the Laurentian Great Lakes with multi-scale satellite remote sensing. Journal of Great Lakes Research, 39, 78–89.

    Article  Google Scholar 

  61. Silva, T. S. F., Costa, M. P. F., Melack, J. M., & Novo, E. M. L. M. (2008). Remote sensing of aquatic vegetation: theory and applications. Environmental Monitoring and Assessment, 140(1–3), 131–145.

    Article  Google Scholar 

  62. Sonnentag, O., Hufkens, K., Teshera-Sterne, C., Young, A. M., Friedl, M. A., Braswell, B. H., Miliman, T., O’Keefe, J., & Richardson, A. D. (2012). Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology, 152, 159–177.

    Article  Google Scholar 

  63. Tamminga, A., Hugenholtz, C., Eaton, B., & Lapointe, M. (2015). Hyperspatial remote sensing of channel reach morphology and hydraulic fish habitat using an unmanned aerial vehicle (Uav): a first assessment in the context of river research and management. River Research and Applications, 31(3), 379–391.

    Article  Google Scholar 

  64. Tempfli, K., Kerle, N., Huurneman, G. & Janssen, L. (2009). Principles of remote sensing. Enschede, NL.

  65. U.S. Department of the Interior & U.S. Geological Survey (2016). Landsat missions. In: http://landsat.usgs.gov.

  66. van de Koppel, J., Gascoigne, J. C., Theraulaz, G., Rietkerk, M., Mooij, W. M., & Herman, P. M. J. (2008). Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science, 322(5902), 739–742.

    Article  Google Scholar 

  67. van der Wal, D., van Dalen, J., Wielemaker-van den Dool, A., Dijkstra, J. T., & Ysebaert, T. (2014). Biophisical contral of the intertidal benthic macroalgae revealed by high-frequency multispectral camera images. Journal of Sea Research, 90, 111–120.

    Article  Google Scholar 

  68. Vereecken, H., Baetens, J., Viaene, P., Mostaert, F., & Meire, P. (2006). Ecological management of aquatic plants: effects in lowland streams. Hydrobiologia, 570, 205–210.

    Article  Google Scholar 

  69. Verschoren, V., Meire, D., Schoelynck, J., Buis, K., Bal, K. D., Troch, P., Meire, P., & Temmerman, S. (2016). Resistance and reconfiguration of natural flexible submerged vegetation in hydrodynamic river modelling. Environmental Fluid Mechanics, 16(1), 245–265.

    CAS  Article  Google Scholar 

  70. Villa, P., Bresciani, M., Bolpagni, R., Pinardi, M., & Giardino, C. (2015). A rule-based approach for mapping macrophyte communities using multi-temporal aquatic vegetation indices. Remote Sensing of Environment, 171, 218–233.

    Article  Google Scholar 

  71. Visser, F., Buis, K., Verschoren, V. & Schoelynck, J. (2016). Mapping of submerged aquatic in rivers from very high-resolution image data, using object-based image analysis combined with expert knowledge. Hydrobiologia :19. doi:10.1007/s10750-016-2928-y.

  72. Visser, F., Wallis, C., & Sinnott, A. M. (2013). Optical remote sensing of submerged aquatic vegetation: opportunities for shallow clearwater streams. Limnologica, 43(5), 388–398.

    Article  Google Scholar 

  73. Wiederkehr, J., Grac, C., Fabregue, M., Fontan, B., Labat, F., Le Ber, F., & Tremolieres, M. (2015). Experimental study of uncertainties on the macrophyte index (IBMR) based on species identification and cover. Ecological Indicators, 50, 242–250.

    Article  Google Scholar 

  74. Wood, K. A., Stillman, R. A., Clarke, R. T., Daunt, F., & O’Hare, M. T. (2012). Measuring submerged macrophyte standing crop in shallow rivers: a test of methodology. Aquatic Botany, 102, 28–33.

    Article  Google Scholar 

Download references

Acknowledgements

The funding for this research was partly provided by the Research Fund Flanders (FWO, project no. G.0290.10) via the multidisciplinary research project ‘Linking optical imaging techniques and 2D-modelling for studying spatial heterogeneity in vegetated streams and rivers’ (University of Antwerp and University of Ghent) and party by Province of Antwerp, Departement Leefmilieu, dienst Integraal Waterbeleid (report number ECOBE-014-R179). V.V. thanks the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) for personal research funding. J.S. is a postdoctoral fellow of FWO (project no. 12H8616N).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Veerle Verschoren.

Appendix

Appendix

Table 6 Overview of the measured hydraulic data per river per month
Table 7 The biomass/cover conversion factor mean ± standard error (g m−2) is measured per month for C. obtusangula, S. emersum and P. natans (n = 3)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verschoren, V., Schoelynck, J., Buis, K. et al. Mapping the spatio-temporal distribution of key vegetation cover properties in lowland river reaches, using digital photography. Environ Monit Assess 189, 294 (2017). https://doi.org/10.1007/s10661-017-6004-5

Download citation

Keywords

  • Macrophytes
  • Vegetation cover
  • Very high spatial resolution
  • Flexible temporal resolution