Skip to main content

Advertisement

Log in

Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 13 June 2017

Abstract

Many techniques are available for detection of shorelines from multispectral satellite imagery, but the choice of a certain technique for a particular study area can be tough. Hence, for the first time in literature, an inter-comparison of the most widely used shoreline mapping techniques such as Normalized Difference Water Index (NDWI), Modified NDWI (MNDWI), Improved Band Ratio (IBR) Method, and Automatic Water Extraction Index (AWEI) has been done along four different coastal stretches of India using multitemporal Landsat data. The obtained results have been validated with the high-resolution images of Cartosat-2 (panchromatic) and multispectral images from Google Earth. Performance of the above indices has been analyzed based on the statistics, such as overall accuracy, kappa coefficient, user’s accuracy, producer’s accuracy, and the average deviation from the reference line. It is observed that the performance of NDWI and IBR techniques are dependent on the physical characteristics of the sites, and therefore, it varies from one site to another. Results indicate that unlike these two indices, the AWEI algorithm performs consistently well followed by MNDWI irrespective of the land cover types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alesheikh, A. A., Ghorbanali, A., & Nouri, N. (2007). Coastline change detection using remote sensing. International Journal of Environmental Science & Technology, 4(1), 61–66.

    Article  Google Scholar 

  • Boak, E.H. and Turner, I.L.( 2005). Shoreline definition and detection: a review. Journal of coastal research, 21(4), 688–703.

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.

    Article  Google Scholar 

  • Davranche, A., Lefebvre, G., & Poulin, B. (2010). Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sensing of Environment, 114(3), 552–562.

    Article  Google Scholar 

  • Demirkesen, A. C., Evrendilek, F., & Berberoglu, S. (2008). Quantifying coastal inundation vulnerability of Turkey to sea-level rise. Environmental Monitoring and Assessment, 138(1–3), 101–106.

    Article  Google Scholar 

  • Du, Z., Li, W., Zhou, D., Tian, L., Ling, F., Wang, H., Gui, Y., & Sun, B. (2014). Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sensing Letters, 5(7), 672–681.

    Article  Google Scholar 

  • Duan, Z., & Bastiaanssen, W. G. M. (2013). Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sensing of Environment, 134, 403–416.

    Article  Google Scholar 

  • Feng, Y., Liu, Y., & Liu, D. (2015). Shoreline mapping with cellular automata and the shoreline progradation analysis in Shanghai, China from 1979 to 2008. Arabian Journal of Geosciences, 8(7), 4337–4351.

    Article  Google Scholar 

  • Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35.

    Article  Google Scholar 

  • Fletcher, C. H., Romine, B. M., Genz, A. S., Barbee, M. M., Dyer, M., Anderson, T. R., Lim, S. C., Vitousek, S., Bochicchio, C., & Richmond, B. M. (2011). National assessment of shoreline change: historical shoreline change in the Hawaiian Islands. US Geological Survey Open-File Report, 1051, 55.

    Google Scholar 

  • Hui, F., Xu, B., Huang, H., Yu, Q., & Gong, P. (2008). Modelling spatial-temporal change of Poyang Lake using multitemporal Landsat imagery. International Journal of Remote Sensing, 29(20), 5767–5784.

    Article  Google Scholar 

  • INCOIS. (2009). Report on use of satellite data for detection of violation of land use along the coastal regulation zone and impact of port structures on shoreline changes. Hyderabad: Indian National Centre for Ocean Information Services.

    Google Scholar 

  • Jiang, H., Feng, M., Zhu, Y., Lu, N., Huang, J., & Xiao, T. (2014). An automated method for extracting rivers and lakes from Landsat imagery. Remote Sensing, 6(6), 5067–5089.

    Article  Google Scholar 

  • Kuleli, T., Guneroglu, A., Karsli, F., & Dihkan, M. (2011). Automatic detection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38(10), 1141–1149.

    Article  Google Scholar 

  • Louati, M., Saïdi, H., & Zargouni, F. (2015). Shoreline change assessment using remote sensing and GIS techniques: a case study of the Medjerda delta coast, Tunisia. Arabian Journal of Geosciences, 8(6), 4239–4255.

    Article  Google Scholar 

  • Lucrezi, S., Schlacher, T. A., & Walker, S. (2009). Monitoring human impacts on sandy shore ecosystems: a test of ghost crabs (Ocypode spp.) as biological indicators on an urban beach. Environmental Monitoring and Assessment, 152(1–4), 413–424.

    Article  Google Scholar 

  • ManiMurali, R., Ankita, M., Amrita, S., & Vethamony, P. (2013). Coastal vulnerability assessment of Puducherry coast, India, using the analytical hierarchical process. Natural Hazards and Earth System Sciences, 13(12), 3291–3311.

    Article  Google Scholar 

  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432.

    Article  Google Scholar 

  • Mishra, N., Haque, M. O., Leigh, L., Aaron, D., Helder, D., & Markham, B. (2014). Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+). Remote Sensing, 6(12), 12619–12638.

    Article  Google Scholar 

  • Misra, A., & Balaji, R. (2015). Decadal changes in the land use/land cover and shoreline along the coastal districts of southern Gujarat, India. Environmental Monitoring and Assessment, 187(7), 1–13.

    Article  Google Scholar 

  • Misra, A., Murali, R.M., Sukumaran, S. and Vethamony, P.(2014). Seasonal variations of total suspended matter (TSM) in the Gulf of Khambhat, west coast of India. Indian Journal of Marine Sciences, 43(7), 1202–1209.

  • Natesan, U., Thulasiraman, N., Deepthi, K., & Kathiravan, K. (2013). Shoreline change analysis of Vedaranyam coast, Tamil Nadu, India. Environmental Monitoring and Assessment, 185(6), 5099–5109.

    Article  CAS  Google Scholar 

  • Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  Google Scholar 

  • Ozturk, D., & Sesli, F. A. (2015). Shoreline change analysis of the Kizilirmak Lagoon Series. Ocean & Coastal Management, 118, 290–308.

    Article  Google Scholar 

  • Padman, L. and Erofeeva, S. (2005). Tide model driver (TMD) manual, version 1.2. Earth & Space Research, Seattle, Wash. Available at www.esr.org/polar_tide_models/README_TMD.pdf. Accessed 7 Nov 2015.

  • Pardo-Pascual, J. E., Almonacid-Caballer, J., Ruiz, L. A., & Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1–11.

    Article  Google Scholar 

  • Rao, M. J., Greeshma Gireesh, A. G., Avatharam, P., Anil, N. C., & Karuna Karudu, T. (2012). Studies on coastal geomorphology along Visakhapatnam to Bheemunipatnam, East Coast of India. Journal of Indian Geophysical Union, 16(4), 179–187.

    Google Scholar 

  • Rogers, A. S., & Kearney, M. S. (2004). Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices. International Journal of Remote Sensing, 25(12), 2317–2335

  • Rokni, K., Ahmad, A., Selamat, A., & Hazini, S. (2014). Water feature extraction and change detection using multitemporal Landsat imagery. Remote Sensing, 6, 4173–4189.

    Article  Google Scholar 

  • Romine, B. M., & Fletcher, C. H. (2012). A summary of historical shoreline changes on beaches of Kauai, Oahu, and Maui, Hawaii. Journal of Coastal Research, 29(3), 605–614

  • Sanilkumar, V., Pathak, K. C., Pednekar, P., Raju, N. S. N., & Gowthaman, R. (2006). Coastal processes along the Indian coastline. Current Science, 91(4), 530–536.

    Google Scholar 

  • Solecki, W. and Rosenzweig, C. (2012). US cities and climate change: urban, infrastructure, and vulnerability issues, Technical Input Report Series, US National Climate Assessment.

  • Sun, F., Sun, W., Chen, J., & Gong, P. (2012). Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 33(21), 6854–6875.

    Article  Google Scholar 

  • Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033.

    Article  Google Scholar 

  • Zhai, K., Wu, X., Qin, Y., & Du, P. (2015). Comparison of surface water extraction performances of different classic water indices using OLI and TM imageries in different situations. Geo-spatial Information Science, 18(1), 32–42.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their constructive comments. Authors sincerely thank the United States Geologic Survey and Google Earth for providing the images free of cost.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RAAJ Ramsankaran.

Additional information

Highlights

• Comprehensive inter-comparison of the most widely used remote sensing-based simple and robust shoreline mapping techniques

• A first of its kind inter-comparison study for shoreline mapping at various coastal stretches of India

• Automated Otsu clustering technique for NDWI and MNDWI indices to avoid subjectivity

An erratum to this article is available at http://dx.doi.org/10.1007/s10661-017-6046-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sunder, S., Ramsankaran, R. & Ramakrishnan, B. Inter-comparison of remote sensing sensing-based shoreline mapping techniques at different coastal stretches of India. Environ Monit Assess 189, 290 (2017). https://doi.org/10.1007/s10661-017-5996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5996-1

Keywords

Navigation