Skip to main content

Advertisement

Log in

Using principal component analysis and annual seasonal trend analysis to assess karst rocky desertification in southwestern China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Increasing exploitation of karst resources is causing severe environmental degradation because of the fragility and vulnerability of karst areas. By integrating principal component analysis (PCA) with annual seasonal trend analysis (ASTA), this study assessed karst rocky desertification (KRD) within a spatial context. We first produced fractional vegetation cover (FVC) data from a moderate-resolution imaging spectroradiometer normalized difference vegetation index using a dimidiate pixel model. Then, we generated three main components of the annual FVC data using PCA. Subsequently, we generated the slope image of the annual seasonal trends of FVC using median trend analysis. Finally, we combined the three PCA components and annual seasonal trends of FVC with the incidence of KRD for each type of carbonate rock to classify KRD into one of four categories based on K-means cluster analysis: high, moderate, low, and none. The results of accuracy assessments indicated that this combination approach produced greater accuracy and more reasonable KRD mapping than the average FVC based on the vegetation coverage standard. The KRD map for 2010 indicated that the total area of KRD was 78.76 × 103 km2, which constitutes about 4.06% of the eight southwest provinces of China. The largest KRD areas were found in Yunnan province. The combined PCA and ASTA approach was demonstrated to be an easily implemented, robust, and flexible method for the mapping and assessment of KRD, which can be used to enhance regional KRD management schemes or to address assessment of other environmental issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams, J. B., Sabol, D. E., Kapos, V., Filho, R. A., Roberts, D. A., Smith, M. O., & Gillespie, A. R. (1995). Classification of multispectral images based on fractions of endmembers: application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment, 52, 137–154.

    Article  Google Scholar 

  • Bao, G., Qin, Z., Bao, Y., Zhou, Y., Li, W., & Sanjjav, A. (2014). NDVI-based long-term vegetation dynamics and its response to climate change in the Mongolian Plateau. Remote Sening., 6, 8337–8358.

    Article  Google Scholar 

  • Bou Kheir, R., Abdallah, C., & Khawlie, A. (2008). Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS. Engineering Geology, 99, 239–254.

    Article  Google Scholar 

  • Brinkmann, R., & Parise, M. (2012). Karst environments: problems, management, human impacts, and sustainability, and introduction to the special issue. Journal of Cave and Karst Studies, 74(2), 135–136. doi:10.4311/2011JCKS0253.

  • Campo-Bescós, M. A., Muñoz-Carpena, R., Southworth, J., Zhu, L., Waylen, P. R., & Bunting, E. (2013). Combined spatial and temporal effects of environmental controls on long-term monthly NDVI in the southern Africa Savanna. Remote Sensing, 5, 6513–6538.

    Article  Google Scholar 

  • Chen, Q. W., Lan, A. J., Xiong, K. N., Xiao, S. Z., Wang, J., & Xiong, J. (2003). Spectral feature-based model for extracting karst rock desertification from remote sensing images. Journal of Guizhou Normal University (Natural Sciences), 21(4), 82–87 (in Chinese).

    CAS  Google Scholar 

  • Congalton, R. G., & Green, K. (1999). Assessing the accuracy of remotely sensed data: principles and practices. Boca Raton, FL: Lewis.

    Google Scholar 

  • De Waele, J., Gutiérrez, F., Parise, M., & Plan, L. (2011). Geomorphology and natural hazards in karst areas: a review. Geomorphology, 134, 1–8.

    Article  Google Scholar 

  • Drew, D., & Hötzl, H. (1999). Karst Hydrogeology and Human Activities (p. 322). Rotterdam: Balkema.

    Google Scholar 

  • Drew, D. P. (1983). Accelerated soil erosion in a karst area: The Burren, western Ireland. Journal of Hydrology, 6, 113–124.

    Article  Google Scholar 

  • Eastman, J. R. (2015). IDRISI TerrSet Manual, 278-305p. Worcester: Clark University.

    Google Scholar 

  • Eastman, J. R., Sangermano, F., Ghimire, B., Zhu, H., Chen, H., Neeti, N., Cai, Y., Machado, E. A., & Crema, S. C. (2009). Seasonal trend analysis of image time series. International Journal of Remote Sensing, 30(10), 2721–2726.

    Article  Google Scholar 

  • Eastman, J. R., Sangermano, F., Machado, E. A., Rogan, J., & Anyamaba, A. (2013). Global trends in seasonality of normalized difference vegetation index (NDVI), 1982–2011. Remote Sensing, 5, 4799–4818.

    Article  Google Scholar 

  • Foody, G. M. (2002). Status of land-cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201.

    Article  Google Scholar 

  • Ford, D. C., & Williams, P. (2007). Karst Hydrogeology and Geomorphology (p. 563). Chichester: John Wiley.

    Book  Google Scholar 

  • Galford, G. L., Mustard, J. F., Melillo, J., Gendrin, A., Cerri, C. C., & Cerri, C. E. P. (2008). Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sensing of Environment, 112, 576–587.

    Article  Google Scholar 

  • Gillieson, D., Wallbrink, P., & Cochran, A. (1996). Vegetation change, erosion risk, and land management on the Nullarbor Plain, Australia. Environmental Geology, 28(3), 145–153.

    Article  Google Scholar 

  • Gunn, J. (2004). Limestone as a mineral resource. In J. Gunn (Ed.), Encyclopedia of caves and karst science (pp. 489–490). New York: Fitzroy Dearborn.

    Google Scholar 

  • Hou, W., Gao, J., Wu, S., & Dai, E. (2015). Interannual variations in growing-season NDVI and its correlation with climate variables in the southwestern karst region of China. Remote Sensing, 7, 11105–11124.

    Article  Google Scholar 

  • Hu, B. Q., Huang, Q. Y., Li, C. M., Yang, Z. Q., Jiang, S. F., & Wu, Z. M. (2004). Spatial correlation analysis of karst rocky desertification and soil type based on RS and GIS. Bulletin of Soil and Water Conservation, 24(5), 67–70 (in Chinese).

    Google Scholar 

  • Huang, Q. H., & Cai, Y. L. (2006). Assessment of karst rocky desertification using the radial basis function network model and GIS technique: a case study of Guizhou province, China. Environmental Geology, 8, 1173–1179.

    Google Scholar 

  • Huang, Q. H., & Cai, Y. L. (2007). Spatial pattern of karst rock desertification in the middle of Guizhou Province, Southwestern China. Environmental Geology, 52, 1325–1330.

    Article  Google Scholar 

  • Huang, Q. H., & Cai, Y. L. (2009). Mapping karst rock in Southwest China. Mountain Research and Development, 29(1), 14–20.

    Article  Google Scholar 

  • Jiang, Z. Y., Huete, A. R., Chen, J., Chen, Y. H., Li, J., Yan, G. J., & Zhang, X. Y. (2006). Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sensing of Environment, 101, 366–378.

    Article  Google Scholar 

  • Koschke, L., Fürst, C., Frank, S., & Makeschin, F. (2012). A multi-criteria approach for an integrated land-cover-based assessment of ecosystem services provision to support landscape planning. Ecological Indicators, 21, 54–66.

    Article  Google Scholar 

  • Lei, L., Cai, X. F., Chen, X., & Wang, J. (2009). Analysis of natural factors impacting rock desertification in karst areas of Guizhou Province. Journal of Anhui Agricultural Science, 37(9), 4244–4248 (in Chinese).

    Google Scholar 

  • Li, L., Tong, L. Q., & Li, X. H. (2010). Remote-sensing information extraction method based on vegetation coverage. Remote Sensing for Land and Resources, 84(2), 59–62 (in Chinese).

    Google Scholar 

  • Li, W. H., & Yu, D. Q. (2002). A study of the technology for remote sensing investigation of rocky desertification in areas of karst stony hills. Remote Sensing of Land and Resources, 1, 34–37 (in Chinese).

    Google Scholar 

  • Li, Y. B., Shao, J. A., Yang, H., & Bai, X. Y. (2009). Relations between land use and karst rocky desertification in a typical karst area, China. Environmental Geology, 57, 621–627.

    Article  CAS  Google Scholar 

  • Li, Z., Huffman, T., McConkey, B., & Townley-Smith, L. (2013). Monitoring and modeling spatial and temporal patterns of grassland dynamics using time-series MODIS NDVI with climate and stocking data. Remote Sensing of Environment, 138, 232–244.

    Article  Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2004). Remote sensing and image interpretation (Fifth ed.). New York: John Wiley.

    Google Scholar 

  • Ling, C., Zhang, H., Lin, H. (2009). Composite vegetation indexes and spatial analysis applied to rock-desertification information extraction. Proceedings, SPIE Second International Conference on Earth Observation for Global Changes, 7471(74710F), pp. 1–9.

  • Liu, B., Yue, Y. M., Li, Y., Wang, K. L., Zhang, B., & Tong, Q. X. (2010). Study on the relation between fraction cover and mixed spectral in karst environment. Spectroscopy and Spectral Analysis, 30(90), 2470–2474 (in Chinese).

    CAS  Google Scholar 

  • Liu, Y., & Lei, H. (2015). Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sensing, 7, 10243–10268.

    Article  Google Scholar 

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Lü, Y., Zhang, L., Feng, X., Zeng, Y., Fu, B., Yao, X., Yao, X., Li, J., & Wu, B. (2015). Recent ecological transitions in China: greening, browning, and influential factors. Scientific Reports, 5, 8732.

    Article  Google Scholar 

  • Mishra, N. B., & Chaudhuri, G. (2015). Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000-2014. Applied Geography, 56, 29–41.

    Article  Google Scholar 

  • Montandon, L. M., & Small, E. E. (2007). The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sensing of Environment, 112, 1835–1845.

    Article  Google Scholar 

  • Neeti, N., & Eastman, J. R. (2011). A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Transactions in GIS, 15(5), 599–611.

    Article  Google Scholar 

  • Neeti, N., Rogan, J., Christman, Z., Eastman, J. R., Millones, M., Schneider, L., Nickl, E., Schmook, B., Turner, B. L., & Ghimire, B. (2012). Mapping seasonal trends in vegetation using AVHRR-NDVI time series in the Yucatan Peninsula, Mexico. Remote Sensing Letters, 3, 433–442.

    Article  Google Scholar 

  • Parise, M., De Waele, J., & Gutiérrez, F. (2009). Current perspectives on the environmental impacts and hazards in karst. Environmental Geology, 58, 235–237.

    Article  Google Scholar 

  • Parmentier, B. (2014). Characterization of land transitions patterns from multivariate time series using seasonal trend analysis and principal component analysis. Remote Sensing, 2014(6), 12639–12665.

    Article  Google Scholar 

  • Peng, J., Li, Y., Tian, L., Liu, Y. X., & Wang, Y. L. (2015). Vegetation dynamics and associated driving forces in Eastern China during 1999-2008. Remote Sensing, 7, 13641–13663.

    Article  Google Scholar 

  • Peng, J., Liu, Z. H., Liu, Y. H., Wu, J. S., & Han, Y. N. (2012b). Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using Hurst exponent. Ecological Indicators, 14, 28–39.

    Article  Google Scholar 

  • Peng, J., Liu, Y. Q., Shen, H., Han, Y. N., & Pan, Y. J. (2012a). Vegetation coverage change and associated driving forces in mountain areas of Northwestern Yunan, China using RS and GIS. Environmental Mornitoring and Assessment, 184, 4787–4798.

    Article  Google Scholar 

  • Peng, J., Xu, Y. H., Zhang, R., Xiong, K. N., & Lan, A. J. (2013). Soil erosion monitoring and its implication in a limestone land suffering from rocky desertification in the Huajiang Canyon, Guizhou, Southwest China. Environmental Earth Sciences, 69(3), 831–841.

    Article  Google Scholar 

  • Pontius Jr., R. G. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing, 66(8), 1011–1016.

    Google Scholar 

  • Price, J. R. (1994). How unique are spectral signatures? Remote Sensing of Environment, 49, 181–186.

    Article  Google Scholar 

  • Qu, B., Zhu, W., Jia, S., & Lv, A. (2015). Spatio-temporal changes in vegetation activity and its driving factors during the growing season in China from 1982 to 2011. Remote Sensing, 7, 10243–10268.

    Article  Google Scholar 

  • Richards, J. A., & Jia, X. (2006). Remote sensing digital image analysis: an introduction (Fourth ed.). Berlin: Springer-Verlag.

    Google Scholar 

  • The State Forestry Administration of the People’s Republic of China. (2012). Report of Karst Desertification in China. http://www.forestry.gov.cn/portal/zsxh/s/3445/content-548741.html.

  • Tong, L. Q. (2003). A method for extracting remote sensing information from rocky desertification areas in southwest China. Remote Sensing for Land and Resources, 58(4), 35–38 (in Chinese).

    Google Scholar 

  • Tong, L. Q., Liu, C. L., & Nie, H. F. (2013). Karst rocky desertification investigation and dynamic detection using remote sensing techniques in karst carbonate rocky mountain region, south of China. Beijing: Science Press (in Chinese).

    Google Scholar 

  • Tong, X., Wang, K., Brandt, M., Yue, Y., Liao, C., & Fensholt, R. (2016). Assessing future vegetation trends and restoration prospects in the karst regions of southwest China. Remote Sensing, 8, 357.

    Article  Google Scholar 

  • Wang, S. J., & Li, Y. B. (2007). Problems and development trends about researches on karst rocky desertification. Advances in Earth Science, 22(6), 573–582 (in Chinese).

    Google Scholar 

  • Wang, S. J., Li, Y. B., & Li, R. L. (2003). Karst rocky desertification: formation background, evolution, and comprehensive taming. Journal of Quaternary Science, 23(6), 657–666.

    Google Scholar 

  • Wang, S. J., Li, R. L., Sun, C. X., Zhang, D. F., Li, F. Q., Zhou, D. Q., Xiong, K. N., & Zhou, Z. F. (2004b). How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: phenomena and mechanisms. Land Degradation and Development, 15, 123–131.

    Article  Google Scholar 

  • Wang, S. J., Liu, Q. M., & Zhang, D. F. (2004a). Karst rocky desertification in southwestern China: geomorphology, landuse, impact and rehabilitation. Land Degradation and Development, 15, 115–121.

    Article  Google Scholar 

  • Wardlow, B. D., & Egbert, S. L. (2008). Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the U.S. Central Great Plains. Remote Sensing of Environment, 112, 1096–1116.

    Article  Google Scholar 

  • Weiss, D. J., & Walsh, S. J. (2009). Remote sensing of mountain environments. Geography Compass, 3(1), 1–21.

    Article  Google Scholar 

  • Xia, X., Tian, Q., & Du, F. (2006). Retrieval of rock desertification from multi-spectral remote sensing images. Journal of Remote Sensing, 10(4), 469–474 (in Chinese).

    Google Scholar 

  • Xiao, R. B., Ouyang, Z. Y., Wang, X. K., & Zhao, T. Q. (2005). Sensitivity of rocky desertification and its spatial distribution in southwestern China. Chinese Journal of Ecology, 24(5), 551–554.

    Google Scholar 

  • Xiong, K. N., Li, P., Zhou, Z. F., An, Y. L., Lv, T., & Lan, A. J. (2002). The study of karst rocky desertification using GIS and RS tech: a case study of Guizhou Province. Beijing: Geology Press (in Chinese).

    Google Scholar 

  • Xiong, Y. J., Qiu, G. Y., Mo, D. K., Lin, H., Sun, H., Wang, Q. X., Zhao, S. H., & Yin, J. (2009). Rocky desertification and its causes in karst areas: a case study in Yongshun County, Hunan Province, China. Environmental Geology, 57, 1481–1488.

    Article  Google Scholar 

  • Yang, J., Weisberg, P. J., & Bristow, N. A. (2012). Landsat remote sensing approaches for monitoring long-term tree-cover dynamics in semi-arid woodlands: comparison of vegetation indices and spectral mixture analysis. Remote Sensing of Environment, 119, 62–71.

    Article  Google Scholar 

  • Yang, Q. Y., Jiang, Z. C., Ma, Z. L., Luo, W. Q., Xie, Y. Q., & Cao, J. H. (2013). Relationship between karst rocky desertification and its distance to roadways in a typical karst area of Southwest China. Environmental Earth Sciences, 70(1), 295–302.

    Article  Google Scholar 

  • Yue, Y., Zhang, B., Wang, K., Liu, B., Li, R., Jiao, Q., Yang, Q., & Zhang, M. (2010). Spectral indices for estimating ecological indicators of karst rocky desertification. International Journal of Remote Sensing, 31(8), 2115–2122.

    Article  Google Scholar 

  • Yue, Y. M., Wang, K. L., Zhang, B., Liu, B., Chen, H. S., & Zhang, M. Y. (2011). Uncertainty of remotely sensed extraction of information of karst rocky desertification. Advances in Earth Science, 26(3), 266–274 (in Chinese).

    Google Scholar 

  • Yuksel, A., Gundogan, R., & Akay, A. E. (2008). Using the remote sensing and GIS technology for erosion risk mapping of Kartalkaya Dam watershed in Kahramanmaras, Turkey. Sensors, 8, 4851–4865.

    Article  Google Scholar 

  • Zeng, X. B., Dickinson, R. E., Walker, A., Shaikh, M., Defries, R. S., & Qi, J. G. (2000). Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. Journal of Applied Meteorology, 39(6), 826–939.

    Article  Google Scholar 

  • Zhan, X., Sohlberg, R. A., Townshend, J. R. G., DiMiceli, C., Carroll, M. L., Eastman, J. C., Hansen, M. C., & DeFries, R. S. (2002). Detection of land cover changes using MODIS 25m data. Remote Sensing of Environment, 83, 336–350.

    Article  Google Scholar 

  • Zhang, Z. M., De Clercq, E. M., Ou, X. K., De Wulf, R. R., & Verbeke, L. P. C. (2008). Mapping dominant vegetation communities in Meili Snow Mountain, Yunnan Province, China using satellite imagery and plant community data. Geocarto Intenational, 23(2), 135–153.

    Article  Google Scholar 

  • Zhang, Z. M., Xu, W. H., Zhou, W. Q., Zhang, L., Xiao, Y., Ou, X. K., & Ouyang, Z. (2014). Integrating remote sensing with GIS-based multi-criteria evaluation approach for karst rocky desertification assessment in Southwest of China. IOP Conference Series: Earth and Environmental Science, 18, 012038. doi:10.1088/1755-1315/18/1/012038.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (41361046). The authors are grateful to Zhang Lu, Jiang Ling, Rao Enming, and Wang Liyan for their help during the fieldwork. We would like to thank Editage [www.editage.cn] and Mari McClelland for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed significantly to this manuscript. To be specific, Zhiming Zhang, Weihua Xu, and Ouyang Zhiyun designed this study. Zhiming Zhang and Yang Xiao were responsible for the data processing. Zhiming Zhang wrote the draft with data analysis support from Yang Xiao.

Corresponding author

Correspondence to Weihua Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ouyang, Z., Xiao, Y. et al. Using principal component analysis and annual seasonal trend analysis to assess karst rocky desertification in southwestern China. Environ Monit Assess 189, 269 (2017). https://doi.org/10.1007/s10661-017-5976-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5976-5

Keywords

Navigation