Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia)


Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Alcaldía de Altamira. (2016). Proyecto de acuerdo No. 008 de 2016. Resource document. Accessed 10 September 2016.

  2. Alcaldía de El Agrado. (2016). Acuerdo No. 015 De 2016. Resource document Accessed 10 September 2016.

  3. Alcaldía de Pitalito. (2016). Acuerdo No. 022 de 2016. Resource document Accessed 10 September 2016.

  4. Alcaldía de Rivera. (2016). Acuerdo municipal PDM 2016. Resource document. Accessed 10 September 2016.

  5. Antonijevic, E., Mandinic, Z., Curcic, M., Djukic-Cosic, D., Milicevic, N., & Ivanovic, et al. (2015). “Borderline” fluorotic region in Serbia: correlations among fluoride in drinking water, biomarkers of exposure and dental fluorosis in schoolchildren. Environmental Geochemistry and Health, 38(3), 885–896.

  6. APHA (2012). Standard methods for the examination of water and wastewater. Washington, DC: Rice, E.W., Baird, R.B., Eaton, A.D., Clesceri. L.S. (Eds.).

  7. Arrieta-Vergara, K., González-Martínez, F., & Luna-Ricardo, L. (2011). Exploración del riesgo para fluorosis dental en niños de las clínicas odontológicas Universidad de Cartagena (Exploration of dental fluorosis risk in children at dental clinics – University of Cartagena). Revista de Salud Pública, 13(4), 672–683.

    Article  Google Scholar 

  8. ATSDR (2003). Toxicological profile for fluorides, hydrogen fluoride, and fluorine. Resource document. Accessed 19 October 2016.

  9. ATSDR. (2005). Public health assessment guidance manual (update). Resource document Accessed 20 October 2016.

  10. Begum, A. (2012). Soil profiles and fluoride adsorption in intensely cultivated areas of Mysore District, Karnataka, India. Chemical Science Transactions, 1(2), 410–414.

    Article  Google Scholar 

  11. Blagojevic, S., Jakovljevic, M., & Radulovic, M. (2002). Content of fluorine in soils in the vicinity of aluminium plant in Podgorica. Journal of Agricultural Science, 47(1), 1–8.

    Google Scholar 

  12. Bombik, E., Bombik, A., Gorski, K., Saba, L., Bombik, T., & Rymuza, K. (2011). The effect of environmental contamination by fluoride compounds on selected horse tissues. Polish Journal of Environmental Studies, 20(1), 37–43.

    CAS  Google Scholar 

  13. Chandio, T. A., Khan, M. N., Sarwar, A. (2015). Fluoride estimation and its correlation with other physicochemical parameters in drinking water of some areas of Balochistan, Pakistan. Environmental Monitoring and Assessment, 187(8), 531. doi:10.1007/s10661-015-4753-6.

  14. Clavijo, J., Ballesteros, C. (1987). Fluorita, in: Recursos Minerales de Colombia (Fluorite, in: Mineral of Colombia). Publicaciones Geológicas Especiales del INGEOMINAS, No. 1 (pp. 839-955). Colombia.

  15. de Souza, C., Lima, J., Adriano, M., de Carvalho, F., Forte, F., de Farias-Oliveira, R., et al. (2013). Assessment of groundwater quality in a region of endemic fluorosis in the northeast of Brazil. Environmental Monitoring and Assessment, 185(6), 4735–4743.

    CAS  Article  Google Scholar 

  16. Fejerskov, O., Larsen, M., Richards, A., & Baelum, V. (1994). Dental tissue effects of fluoride. Advances in Dental Research, 8(1), 15–31.

    CAS  Article  Google Scholar 

  17. Franco, A., Saldarriaga, A., González, M., Martignon, S., Arbeláez, M., Ocampo, A., et al. (2003). Concentración de flúor en la sal de cocina en cuatro ciudades colombianas (Fluorine concentration in table salt in four Colombian cities). Revista CES Odontología, 16, 21–26.

    Google Scholar 

  18. Franco, A., Martignon, S., Saldarriaga, A., González, M., Arbeláez, M., Ocampo, A., et al. (2005). Total fluoride intake in children aged 22-35 months in four Colombian cities. Community Dentistry and Oral Epidemiology, 33(1), 1–8.

    Article  Google Scholar 

  19. Frankenberg, W., Tabatabai, M., Adriano, D., Doner, H. (1996). Bromine, chlorine and fluorine, in: methods of soil analysis part 3—Chemical methods, SSSA book Ser. 5.3., Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H. (Eds.), Madison, (pp. 833–867), doi:10.2136/sssabookser5.3.c31.

  20. ICONTEC, 1995. Norma Técnica Colombiana NTC/ISO 5667-1. Norma Técnica Colombiana NTC/ISO 5667-1. Gestión ambiental. Calidad del agua. Muestreo. Directrices para el diseño de programas de muestreo. (Colombian technical rule NTC/ISO 5667-1 environmental management. Water quality. Sampling. Guidelines for the design of sampling) Bogotá. Resource document. Accessed 5 September 2016.

  21. IGAC. (1994). Estudio General de Suelos del Departamento del Huila. Bogotá (General soil study from department of Huila. Bogotá). Resource document. Accessed 8 October 2016.

  22. IGAC. (2008). Atlas básico Colombia (basic atlas from Colombia). Volume 2, seventh edition. Bogotá: IGAC (Ed.).

  23. Jayaprakash, M., Giridharan, L., Venugopal, T., Krishna Kumar, S. P., & Periakali, P. (2008). Characterization and evaluation of the factors affecting the geochemistry of groundwater in Neyveli, Tamil Nadu, India. Environmental Geology, 54(4), 855–867.

    CAS  Article  Google Scholar 

  24. Jiménez, G., Moncada, O., López, P., Camargo, A. (2006). Municipios afectados por fluorosis dental en el departamento del Huila soluciones, implementación y seguimiento - informe municipios El Pital y El Agrado (Municipalities affected by dental fluorosis department of Huila – solutions, implementation and monitoring – El Pital and El Agrado municipalities report). Dirección Nacional de Investigaciones - Universidad Antonio Nariño.

  25. Marín, L., Cury, J., Tenuta, L., Castellanos, J., & Martignon, S. (2016). Higher fluorosis severity makes enamel less resistant to demineralization. Caries Research, 50(4), 407–413.

    Article  Google Scholar 

  26. Martignon, S., & Granados-Cepeda, O. (2002). Prevalencia de fluorosis dental y análisis de asociación a factores de riesgo en escolares de Bogotá (Dental fluorosis prevalence and risk factors association analysis in scholar children from Bogotá). Revista Científica Facultad de Odontología Universidad El Bosque, 8, 19–27.

    Google Scholar 

  27. Martignon, S., Castiblanco, G., Opazo, M., Usuga-Vacca, M., Marin, L., Silva-Hermida, L., et al. (2016). Colombian-children endemic fluorosis associated with biologic, environmental, and psychosocial aspects. {Abstract}. 45thAnnual meeting of the AADR/40th annual meeting of the CADR. Los Angeles California.

  28. Ministerio de Salud. (1996). Decreto 547 en cuanto a la expedición del registro Sanitario y a las condiciones sanitarias de producción, empaque y comercialización, al control de la sal para consumo humano y se dictan otras disposiciones sobre la materia. Bogotá (Decree 547, by which the tittle V of the law 09/1979 is regulated as regards the issuance of the sanitary registration and the sanitary conditions of production, packaging and marketing of table salt). Resource document. Accessed 1 October 2016.

  29. Misnaza-Castrillón, S. (2009). Relación de factores de riesgo con la severidad de la fluorosis dental confirmada por clínica, en la población de 5 a 19 años atendida en la IPS indígena y en la ESE del municipio Cuaspud Carlosama, Nariño, Colombia (Relationship between risk factors and severity of dental fluorosis clinically diagnosed, in a 5 to 19 years old population attended in two health service centers for indigenous people from Cuaspud Carlosama municipality, department of Nariño, Colombia). Biweekly national epidemiological report. 14 (19), 289–304.. Informe Quincenal Epidemiológico Nacional. 14(19), 289–304. Resource document. Accessed 3 September 2016.

  30. Montaña-Sala, M. (2008). Guía de fluorosis dental – Normas técnicas de la fluorosis dental (Dental fluorosis guideline – technical rules). In Gobernación del Huila. Secretaría de Salud: Departamental. Neiva. Resource document Accessed 10 September 2016.

    Google Scholar 

  31. OPS/OMS. (1995). Manual para la vigilancia epidemiológica de los programas de fluoruración de la sal (Manual for the epidemiological surveillance of salt fluoridation programs). Washington D.C. in Tovar, S., Misnaza, S. (2016). Technical document of fluoride vs caries and dental fluorosis. Bogotá. © Ministerio de Salud y Protección Social, versión 2.0 – febrero. Resource document. Accessed 1 September 2016.

  32. Ramírez, B., Franco, A., Sierra, J., López, R., Alzate, T., Sarrazola, A., et al. (2006). Fluorosis dental en escolares y exploración de factores de riesgo: municipio de Frontino (Dental fluorosis in scholar children and exploration of risk factors: municipality of Frontino) Revista Facultad de Odontología Universidad de Antioquia, 17(2): 26–33.

  33. Ramos-Martínez, K., González-Martínez, F., & Luna-Ricardo, L. (2009). Estado de salud oral y nutricional en niños de una institución educativa de Cartagena (Oral health status in children of a educational institution from Cartagena). Revista Salud Pública, 12(6), 950–960.

    Google Scholar 

  34. República de Colombia. (2009). Protocolo de investigación - Encuesta Nacional De La Situación Nutricional En Colombia 2010 (Research protocol - National Nutritional Status Survey in Colombia). Resource document. Accessed 28 March 2017.

  35. Rojas, A., Prieto, G., Tabares, L., Garcia, D., Neira, G., Sanchez, C. (2010). Evaluación geoquímica para geología médica en el Departamento de Santander (Geochemical assessment for medical geology in the department of Santander). INGEOMINAS Bogotá. Resource document. Accessed 8 October 2016.

  36. Secretary of Mining and Agriculture from the department of Huila. (2008). Expectativas del negocio minero en el territorio departamental (expectations of the mining business in the departmental territory). Resource document. Accessed 11 September 2016.

  37. Servicio Geológico Colombiano. (2011). Fluorosis in Huila department – final inform. Bogotá. Resource document. Accessed 13 August 2016.

  38. Suma, R., Shashibhushan, K., Shashikiran, N., & Subba, R. (2008). Progression of artificial caries in fluorotic and nonfluorotic enamel: an in vitro study. The Journal of Clinical Pediatric Dentistry., 33, 127–130.

    CAS  Article  Google Scholar 

  39. Tellez, M., Santamaria, R. M., Gomez, J., & Martignon, S. (2012). Dental fluorosis, dental caries, and quality of life factors among schoolchildren in a Colombian fluorotic area. Community Dental Health, 29(1), 95–99.

    CAS  Google Scholar 

  40. Thomas, J., Glass, H., White, W., & Trandell, R. (1977). Flouride content of clay minerals and argillaceous earth materials. Clays and Clay Minerals, 25(4), 278–284.

    CAS  Article  Google Scholar 

  41. Thylstrup, A., & Fejerskov, O. (1978). Clinical appearance of dental fluorosis in permanent teeth in relation to histologic changes. Community Dentistry and Oral Epidemiology, 6(6), 315–328.

    CAS  Article  Google Scholar 

  42. Velandia, F., Nuñez, A., Marquinez, G. (2001). Memoria explicativa mapa geológico del Departamento del Department of Huila. Explanatory memory of the Department of Huila geological map. INGEOMINAS Technical Report. Bogotá, doi: 10.13140/2.1.3373.0885.

  43. Zinck, J. A. (2012). Geopedología: Elementos de geomorfología para estudios de suelos y de riesgos naturales (Geopedology: geomorphology elements for studies of soils and natural hazards). Faculty of Geo-Information Science and Earth Observation. ITC. The Netherlands. Resource document. " Accessed 1 September 2016.

Download references

Author information



Corresponding author

Correspondence to Stefania Martignon.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martignon, S., Opazo-Gutiérrez, M.O., Velásquez-Riaño, M. et al. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia). Environ Monit Assess 189, 264 (2017).

Download citation


  • Fluoride
  • Water
  • Salt
  • Geochemistry
  • Enamel fluorosis