Skip to main content

Advertisement

Log in

H emibagrus sp. as a potential bioindicator of hazardous metal pollution in Selangor River

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The spatial distributions of Na, Mg, K, Ca, Cr, Fe, Ni, Cu, Zn, As, Se and Pb in Hemibagrus sp. from Selangor River and a reference site were determined with inductively coupled plasma-mass spectrometer, in comparison to the levels in their surrounding water body and sediments. The results demonstrated significant differences in elemental accumulation pattern in different fish tissues originated from both sites. The variations observed were mainly subjected to their metabolic activities, and also the influence of the surrounding medium. In general, the liver tends to accumulate higher concentration of metals followed by the gills, and muscle tissues. The data also indicate associations between the concentrations of metal contaminants measured in the fish and the levels observed at the sites. The concentrations of hazardous metals As, Se and Pb in all the studied tissues reflect the influence of anthropogenic inputs. This suggests the potential utility of widely available Hemibagrus sp. as a valuable bioindicator of metal pollution in environmental monitoring and assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdel-Khalek, A. A., Elhaddad, E., Mamdouh, S., & Marie, M. A. S. (2016). Assessment of metal pollution around sabal drainage in River Nile and its impacts on bioaccumulation level, metals correlation and human risk hazard using Oreochromis niloticus as a bioindicator. Turkish Journal of Fisheries and Aquatic Sicences, 16(2), 227–239.

    Google Scholar 

  • Adebiyi, F. A., Siraj, S. S., Harmin, S. A., & Christianus, A. (2013). Induced spawning of a river catfish Hemibagrus nemurus (Valenciennes, 1840). Pertanika Journal of Tropical Agricultural Science, 31(1), 71–78.

    Google Scholar 

  • Adhikari, S., Ghosh, L., Rai, S. P., & Ayyappan, S. (2009). Metal concentrations in water, sediment, and fish from sewage-fed aquaculture ponds of Kolkata, India. Environmental Monitoring and Assessment, 159(1–4), 217–230. doi:10.1007/s10661-008-0624-8.

    Article  CAS  Google Scholar 

  • Agarwal, R., Kumar, R., & Behari, J. R. (2007). Mercury and lead content in fish species from the river Gomti, Lucknow, India, as biomarkers of contamination. Bulletin of Environmental Contamination and Toxicology, 78(2), 108–112. doi:10.1007/s00128-007-9035-8.

    Article  Google Scholar 

  • Ahmad, A. K., & Sarah, A. (2015). Human health risk assessment of heavy metals in fish species collected from catchments of former tin mining. International Journal of Research Studies in Science, Engineering and Technology, 2(4), 9–21.

    Google Scholar 

  • Ahmed, M., Ahmad, T., Liaquat, M., Abbasi, K. S., Farid, I. B. A., & Jahangir, M. (2016). Tissue specific metal characterization of selected fish species in Pakistan. Environmental Monitoring and Assessment, 188(4), 1–9.

    Article  Google Scholar 

  • Alloway, B. J. (2013). Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Environmental Pollution, 22.

  • Ayni, F. E., Cherif, S., Jrad, A., & Trabelsi-Ayadi, M. (2011). Impact of treated wastewater reuse on agriculture and aquifer recharge in a coastal area: Korba case study. Water Resources Management, 25(9), 2251–2265. doi:10.1007/s11269-011-9805-2.

    Article  Google Scholar 

  • Baras, E., Hafsaridewi, R., Slembrouck, J., Priyadi, A., Moreau, Y., & Pouyaud, L. (2013). Do cannibalistic fish possess an intrinsic higher growth capacity than others? A case study in the Asian redtail catfish Hemibagrus nemurus (Valenciennes, 1840). Aquaculture Research, 45(1), 68–79.

    Article  CAS  Google Scholar 

  • Batzias, A. F., & Siontorou, C. G. (2008). A new scheme for biomonitoring heavy metal concentrations in semi-natural wetlands. Journal of Hazardous Materials, 158(2–3), 340–358. doi:10.1016/j.jhazmat.2008.01.092.

    Article  CAS  Google Scholar 

  • Beamish, F. W. H., Beamish, R. B., & Lim, S. L. H. (2003). Fish assemblages and habitat in a Malaysian blackwater peat swamp. Environmental Biology of Fishes, 68(1), 1–13.

    Article  Google Scholar 

  • Bebianno, M., Geret, F., Hoarau, P., Serafim, M., Coelho, M., Gnassia-Barelli, M., et al. (2004). Biomarkers in Ruditapes decussatus: a potential bioindicator species. Biomarkers, 9(4–5), 305–330.

    Article  CAS  Google Scholar 

  • Bell, M. V., Kelly, K. F., & Sargent, J. R. (1981). The uptake from fresh water and subsequent clearance of a vanadium burden by the common eel (Anguilla anguilla). Science of the Total Environment, 19(3), 215–222.

    Article  CAS  Google Scholar 

  • Birungi, Z., Masola, B., Zaranyika, M. F., Naigaga, I., & Marshall, B. (2007). Active biomonitoring of trace heavy metals using fish (Oreochromis niloticus) as bioindicator species. The case of Nakivubo wetland along Lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C, 32(15), 1350–1358.

    Article  Google Scholar 

  • Boyd, C. E. (1995). Chemistry and efficacy of amendments used to treat water and soil quality imbalances in shrimp ponds. In C. L. Browdy & J. S. Hopkins (Eds.), Proceedings of the special session on shrimp farming, Baton Rouge, LA (pp. 183–189). Baton Rouge: The World Aquaculture Society.

    Google Scholar 

  • Bryan, G. W., & Langston, W. J. (1992). Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environmental Pollution, 76(2), 89–131. doi:10.1016/0269-7491(92)90099-V.

    Article  CAS  Google Scholar 

  • Canli, M., & Atli, G. (2003). The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environmental Pollution, 121(1), 129–136. doi:10.1016/S0269-7491(02)00194-X.

    Article  CAS  Google Scholar 

  • Cheng, W. H., & Yap, C. K. (2015). Potential human health risks from toxic metals via mangrove snail consumption and their ecological risk assessments in the habitat sediment from Peninsular Malaysia. Chemosphere, 135, 156–165. doi:10.1016/j.chemosphere.2015.04.013.

    Article  CAS  Google Scholar 

  • Chirenje, T., Ma, L. Q., Chen, M., & Zillioux, E. J. (2003). Comparison between background concentrations of arsenic in urban and non-urban areas of Florida. Advances in Environmental Research, 8(1), 137–146.

    Article  CAS  Google Scholar 

  • Daniel, R., & Kawasaki, N. (2016). The distribution of heavy metals and nutrients along Selangor River and its adjacent mining ponds, Malaysia. International Journal of Advances in Agricultural & Environmental Engineering, 3(2).

  • Davies, J., & Rahim, A. A. (1989). Freshwater fish survey of the North Selangor peat swamp forest. WWF Malaysia.

    Google Scholar 

  • Dethloff M.G., Christopher J., Schmitt J.C. (2000). Condition factor and organosomatic indices. In: Schmitt C.J., Dethloff M.G (eds) Biomonitoring of Environmental Status and Trends (BEST) Program: selected methods for monitoring chemical contaminants and their effects in aquatic ecosystems. U.S. Geological Survey, Biological Resources Division, Columbia, (MO): Information and Technology Report USGS/BRD-2000-2005.

  • DID. (2007). Selangor river basin management plan 2007–2012. Kuala Lumpur: Department of Irrigation and Drainage.

    Google Scholar 

  • Dincer, T., Cakli, S., & Cadun, A. (2010). Comparison of proximate and fatty acid composition of the flesh of wild and cultured fish species. Archiv fur Lebensmittelhygiene, 61(1), 12–17. doi:10.2376/0003-925X-61-12.

    CAS  Google Scholar 

  • Dural, M., Göksu, M. Z. L., & Özak, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chemistry, 102(1), 415–421. doi:10.1016/j.foodchem.2006.03.001.

    Article  CAS  Google Scholar 

  • Ebrahimpour, M., & Mushrifah, I. (2010). Seasonal variation of cadmium, copper, and lead concentrations in fish from a freshwater lake. Biological Trace Element Research, 138(1–3), 190–201.

    Article  CAS  Google Scholar 

  • Eimers, M. C., Evans, R. D., & Welbourn, P. M. (2001). Cadmium accumulation in the freshwater isopod Asellus racovitzai: the relative importance of solute and particulate sources at trace concentrations. Environmental Pollution, 111(2), 247–253. doi:10.1016/S0269-7491(00)00066-X.

    Article  CAS  Google Scholar 

  • El-Sadaawy, M. M., El-Said, G. F., & Sallam, N. A. (2013). Bioavailability of heavy metals in fresh water Tilapia nilotica (Oreachromis niloticus Linnaeus, 1758): potential risk to fishermen and consumers. Journal of Environmental Science and Health, Part B, 48(5), 402–409.

    Article  CAS  Google Scholar 

  • Faruk, M., Ali, M., & Patwary, Z. (2008). Evaluation of the status of use of chemicals and antibiotics in freshwater aquaculture activities with special emphasis to fish health management. Journal of the Bangladesh Agricultural University, 6(2), 381–390.

    Google Scholar 

  • Fulazzaky M. A., Seong T. W. & Masirin M. I. M. (2010). Assessment of Water Quality Status for the Selangor River in Malaysia. Water Air Soil Pollution, 205, 63–77.

  • Grigorakis, K., Alexis, M. N., Anthony Taylor, K. D., & Hole, M. (2002). Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. International Journal of Food Science and Technology, 37(5), 477–484. doi:10.1046/j.1365-2621.2002.00604.x.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution. A sedimentological approach. Water Research, 14, 970–1001.

    Article  Google Scholar 

  • Heath, A. G. (1995). Water pollution and fish physiology. Florida: CRC press.

    Google Scholar 

  • Jabeen, F., & Chaudhry, A. S. (2010). Environmental impacts of anthropogenic activities on the mineral uptake in Oreochromis mossambicus from Indus River in Pakistan. Environmental Monitoring and Assessment, 166(1–4), 641–651. doi:10.1007/s10661-009-1029-z.

    Article  CAS  Google Scholar 

  • Jorgensen, S. E. (ed.) (2011). Handbook of ecological models used in ecosystem and environmental management. USA: CRC Press: Taylor & Francis Group.

  • Karadede, H., & Ünlü, E. (2000). Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 41(9), 1371–1376.

    Article  CAS  Google Scholar 

  • Klavins, M., Briede, A., Rodinov, V., Kokorite, I., Parele, E., & Klavina, I. (2009). Heavy metals in rivers of Latvia. Science of the Total Environment, 262, 175–184.

    Article  Google Scholar 

  • Lacerda, L. D., Santos, J. A., & Madrid, R. M. (2006). Copper emission factors from intensive shrimp aquaculture. Marine Pollution Bulletin, 52(12), 1823–1826. doi:10.1016/j.marpolbul.2006.09.012.

    Article  CAS  Google Scholar 

  • Lee, K. Y. (2001). Fish community of the North Selangor peat swamp forest (Doctoral dissertation, MSc Dissertation, University of Malaya, Kuala Lumpur, Malaysia 135 pp).

  • Leong, K. H., Tan, L. B., & Mustafa, A. M. (2007). Contamination levels of selected organochlorine and organophosphate pesticides in the Selangor River, Malaysia between 2002 and 2003. Chemosphere, 66(6), 1153–1159.

    Article  CAS  Google Scholar 

  • Lindsey, B. D., Breen, K. J., Bilger, M. D., & Brightbill, R. A. (1998). Water quality in the lower Susquehanna river basin, Pennsylvania and Maryland, 1992-95 (No. 1168). US Geological Survey; US Geological Survey, Information Services [distributor].

  • Low, K. H., Zain, S. M., & Abas, M. R. (2011). Evaluation of metal concentrations in red tilapia (Oreochromis spp) from three sampling sites in Jelebu, Malaysia using principal component analysis. Food Analytical Methods, 4(3), 276–285. doi:10.1007/s12161-010-9166-0.

    Article  Google Scholar 

  • Low, K. H., Zain, S. M., & Abas, M. R. (2012). Evaluation of microwave-assisted digestion condition for the determination of metals in fish samples by inductively coupled plasma mass spectrometry using experimental designs. International Journal of Environmental Analytical Chemistry, 92(10), 1161–1175. doi:10.1080/03067319.2010.548093.

    Article  CAS  Google Scholar 

  • Low, K. H., Idris, N. S. U., Zain, S. M., Kamaruddin, A. F., Md. Salleh, & K. (2016). Evaluation of elemental distributions in wild-caught and farmed Pangasius sp. Using Pattern Recognition Techniques, International Journal of Food Properties, 19(7), 1489–1503. doi:10.1080/10942912.2015.1084004.

    CAS  Google Scholar 

  • Mac Donald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology.

  • Maceda-Veiga, A., Monroy, M., Navarro, E., Viscor, G., & de Sostoa, A. (2013). Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Science of the Total Environment, 449, 9–19. doi:10.1016/j.scitotenv.2013.01.012.

    Article  CAS  Google Scholar 

  • Malik, R. N., Hashmi, M. Z., & Huma, Y. (2014). Heavy metal accumulation in edible fish species from Rawal Lake Reservoir, Pakistan. Environmental Science and Pollution Research, 21(2), 1188–1196.

    Article  CAS  Google Scholar 

  • Marchand, C., Fernandez, J. M., Moreton, B., Landi, L., Lallier-Vergès, E., & Baltzer, F. (2012). The partitioning of transitional metals (Fe, Mn, Ni, Cr) in mangrove sediments downstream of a ferralitized ultramafic watershed (New Caledonia). Chemical Geology, 300–301, 70–80. doi:10.1016/j.chemgeo.2012.01.018.

    Article  Google Scholar 

  • Martínez, B., Miranda, J. M., Nebot, C., Rodriguez, J. L., Cepeda, A., & Franco, C. M. (2010). Differentiation of farmed and wild turbot (Psetta maxima): proximate chemical composition, fatty acid profile, trace minerals and antimicrobial resistance of contaminant bacteria. Food Science and Technology International, 16(5), 435–441. doi:10.1177/1082013210367819.

    Article  Google Scholar 

  • McCarthy, J. F., & Shugart, L. R. (1990). Biomarkers of environmental contamination. New York: Lewis Publishers.

    Google Scholar 

  • Mishra, R. R., Rath, B., & Thatoi, H. (2008). Water quality assessment of aquaculture ponds in Bhitarkanika mangrove ecosystem, Orisso, India. Turkish Journal of Fisheries and Aquatic Science, 8, 71–77.

    Google Scholar 

  • Mohamad Ali, F., Teng, W. S., & Mohd Idrus, M. M. (2010). Assessment of water quality status for the Selangor River in Malaysia. Water Air Soil Pollution, 205, 63–77. doi:10.1007/s11270-009-0056-2.

    Article  Google Scholar 

  • Naigaga, I., Kaiser, H., Muller, W. J., Ojok, L., Mbabazi, D., Magezi, G., et al. (2011). Fish as bioindicators in aquatic environmental pollution assessment: a case study in Lake Victoria wetlands, Uganda. Physics and Chemistry of the Earth, Parts A/B/C, 36(14–15), 918–928. doi:10.1016/j.pce.2011.07.066.

    Article  Google Scholar 

  • Nannoni, F., Protano, G., & Riccobono, F. (2011). Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma, 161(1–2), 63–73. doi:10.1016/j.geoderma.2010.12.008.

    Article  CAS  Google Scholar 

  • Ng, P. K., & Ng, H. H. (1995). Hemibagrus gracilis, a new species of large riverine catfish (Teleostei: Bagridae) from Peninsular Malaysia. Raffles Bulletin of Zoology, 43, 133–142.

    Google Scholar 

  • Ng, P. K., Tay, J. B., & Lim, K. K. (1994). Diversity and conservation of blackwater fishes in Peninsular Malaysia, particularly in the North Selangor peat swamp forest. In Ecology and conservation of Southeast Asian Marine and Freshwater Environments including Wetlands (pp. 203–218). Springer Netherlands.

  • Nordin, M., & Fariz Mohamed, A. (2002). Manufacturing industries and ecosystem health. In Managing for healthy ecosystems. CRC Press.

  • Pereira, P., Pablo, H. d., Vale, C., & Pacheco, M. (2010). Combined use of environmental data and biomarkers in fish (Liza aurata) inhabiting a eutrophic and metal-contaminated coastal system—gills reflect environmental contamination. Marine Environmental Research, 69(2), 53–62. doi:10.1016/j.marenvres.2009.08.003.

    Article  CAS  Google Scholar 

  • Peters, G. R., McCurdy, R. F., & Hindmarsh, J. T. (1996). Environmental aspects of arsenic toxicity. Critical Reviews in Clinical Laboratory Sciences, 33(6), 457–493.

    Article  CAS  Google Scholar 

  • Santhi, V. A., & Mustafa, A. M. (2013). Assessment of organochlorine pesticides and plasticisers in the Selangor River basin and possible pollution sources. Environmental Monitoring and Assessment, 185(2), 1541–1554.

    Article  CAS  Google Scholar 

  • Sany, S. B. T., Salleh, A., Rezayi, M., Saadati, N., Narimany, L., & Tehrani, G. M. (2013). Distribution and contamination of heavy metal in the coastal sediments of Port Klang, Selangor, Malaysia. Water Air Soil Pollution, 224, 1476. doi:10.1007/s11270-013-1476-6.

    Article  Google Scholar 

  • Sarkar, D., & Datta, R. (2004). Arsenic fate and bioavailability in two soils contaminated with sodium arsenate pesticide: an incubation study. Bulletin of Environmental Contamination and Toxicology, 72(2), 240–247. doi:10.1007/s00128-003-9031-6.

    Article  CAS  Google Scholar 

  • Segura, R., Arancibia, V., Zúñiga, M. C., & Pastén, P. (2006). Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. Journal of Geochemical Exploration, 91(1–3), 71–80. doi:10.1016/j.gexplo.2006.03.003.

    Article  CAS  Google Scholar 

  • Sim, S. F., Ling, T. Y., Nyanti, L., Gerunsin, N., Wong, Y. E., & Kho, L. P. (2016). Assessment of heavy metals in water, sediment, and fishes of a large tropical hydroelectric dam in Sarawak, Malaysia. Journal of Chemistry.

  • Stephens, F., & Ingram, M. (2006). Two cases of fish mortality in low pH, aluminium rich water. Journal of Fish Diseases, 29(12), 765–770.

    Article  CAS  Google Scholar 

  • Tekin-Özan, S., & Aktan, N. (2012). Relationship of heavy metals in water, sediment and tissues with total length, weight and seasons of Cyprinus carpio L., 1758 from Işikli Lake (Turkey). Pakistan Journal of Zoology, 44(5), 1405–1416.

    Google Scholar 

  • Terra, B. F., Araújo, F. G., Calza, C. F., Lopes, R. T., & Teixeira, T. P. (2008). Heavy metal in tissues of three fish species from different trophic levels in a tropical Brazilian river. Water, Air, and Soil Pollution, 187(1–4), 275–284. doi:10.1007/s11270-007-9515-9.

    CAS  Google Scholar 

  • Thielen, F., Zimmermann, S., Baska, F., Taraschewski, H., & Sures, B. (2004). The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environmental Pollution, 129(3), 421–429.

    Article  CAS  Google Scholar 

  • USEPA. (1994). Method 3015, microwave assisted acid digestion of aqueous samples and extracts. Washington, DC: USEPA.

    Google Scholar 

  • USEPA. (1999). Surface water sampling, field sampling guidance document # 1225. California: USEPA.

    Google Scholar 

  • USEPA. (2007). Method 3051A, microwave assisted acid digestion of sediments, sludges, soils and oils. Washington, DC: USEPA.

    Google Scholar 

  • Vicente-Martorell, J. J., Galindo-Riaño, M. D., García-Vargas, M., & Granado-Castro, M. D. (2009). Bioavailability of heavy metals monitoring water, sediments and fish species from a polluted estuary. Journal of Hazardous Materials, 162(2–3), 823–836. doi:10.1016/j.jhazmat.2008.05.106.

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217–1232.

    Article  CAS  Google Scholar 

  • Yi, Y. J., & Zhang, S. H. (2012). Heavy metal (Cd, Cr, Cu, Hg, Pb, Zn) concentrations in seven fish species in relation to fish size and location along the Yangtze River. Environmental Science and Pollution Research, 19(9), 3989–3996. doi:10.1007/s11356-012-0840-1.

    Article  CAS  Google Scholar 

  • Yildiz, M. (2008). Mineral composition in fillets of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata): a comparison of cultured and wild fish. Journal of Applied Ichthyology, 24(5), 589–594. doi:10.1111/j.1439-0426.2008.01097.x.

    Article  CAS  Google Scholar 

  • Zhou, H. Y., & Wong, M. H. (2000). Mercury accumulation in freshwater fish with emphasis on the dietary influence. Water Research, 34(17), 4234–4242. doi:10.1016/S0043-1354(00)00176-7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial assistance for this work from the Ministry of Science, Technology and Innovation, Malaysia (ER010-2011A) and the University of Malaya (RP017-14AFR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kah Hin Low.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idris, N.U., Low, K.H., Koki, I.B. et al. H emibagrus sp. as a potential bioindicator of hazardous metal pollution in Selangor River. Environ Monit Assess 189, 220 (2017). https://doi.org/10.1007/s10661-017-5939-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5939-x

Keywords