Skip to main content

Advertisement

Log in

Trends in land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 23 May 2017

Abstract

Land management decisions have extensively modified land use and land cover in the Zambezi Region. These decisions are influenced by land tenure classifications, legislation, and livelihoods. Land use and land cover change is an important indicator for quantifying the effectiveness of different land management strategies. However, there has been no evidence on whether protected or communal land tenure is more affected by land use and land cover changes in southern Africa and particularly Namibia. Our study attempted to fill this gap by analyzing the relationship between land use and land cover change and land tenure regimes stratified according to protected and communal area in the Zambezi Region. Multi-temporal Landsat TM and ETM+ imagery were used to determine the temporal dynamics of land use and land cover change from 1984 to 2010. The landscape showed distinctive modifications over the study period; broad trends include the increase in forest land after 1991. However, changes were not uniform across the study areas. Two landscape development stages were deduced: (1) 1984–1991 represented high deforestation and gradual increase in shrub land; (2) 1991–2000 and 2000–2010 represented lower deforestation and slower agropastoral expansion. The results further show clear patterns of the dynamics, magnitude, and direction of land use and land cover change by tenure regime. The study concluded that land tenure has a direct impact on land use and land cover, since it may restrict some activities carried out on the land in the Zambezi Region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Apan, A., Kelly, R., Jensen, T., Butler, D., Strong, W., Basnet, B. (2002). Spectral discrimination and separability analysis of agricultural crops and soil attributes using aster imagery. In proceedings of 11th Australasian remote sensing and photogrametry conference (pp. 396–411) Brisbane, Australia.

  • Barnes, J. I., & de Jager, J. L. V. (1996). Economic and financial incentives for wildlife use on private land in Namibia and the implications for policy. Windhoek, Namibia: Ministry of Environment and Tourism.

  • Bengtsson, J. P., Angelstam, T., Elmqvist, U., Emanuelsson, C., Folke, I. M., Moberg, F., & Nyström, M. (2003). Reserves, resilience and dynamic landscapes. Ambio, 32(6), 389–396. doi:10.1579/0044-7447-32.6.389.

    Article  Google Scholar 

  • Central Bureau of Statistics. (2010). An atlas of Namibia’s population: Monitoring and understanding its characteristics. Windhoek: Central Bureau of Statistics.

    Google Scholar 

  • Central Bureau of Statistics. (2012). Namibia 2011 Population and Housing Census Preliminary results. Windhoek, Namibia: Namibia Statistics Agency.

  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 35–46. doi:10.1016/0034-4257(91)90048-B.

    Article  Google Scholar 

  • Diallo, Y., Hu, G., & Wen, X. (2009). Application of remote sensing in land use/land cover change detection in Peur and Simao countries-Yunnan Province. Journal of American Science, 5(4), 157–166.

    Google Scholar 

  • ERDAS. (1999). Field guide. Fifth edition. ERDAS Inc. Atlanta 75(8), 2430–2437.

  • Erkkilä, A., & Löfman, S. (1999). Forest cover change in the Ohangwena region, northern Namibia: A case study based on multitemporal Landsat images and aerial photography. South African Forestry Journal, 184, 25–32.

    Article  Google Scholar 

  • FAO. (1996). Forest resources assessment 1990: Tropical countries. FAO forestry Paper 112. Rome: FAO.

    Google Scholar 

  • FAO. (2006). Global forest resources assessment 2005: progress towards sustainable forest management. United Nations. FAO Forestry Paper 147.

  • FAO-FRA. (2010). Global Forest resources assessment: Namibia country report. Rome, Italy: Food and Agriculture Organization.

  • FAO and UNEP. (1999). Terminology for Integrated Resources Planning and Management. FAO/UNEP, Rome, Italy and Nairobi, Kenya.

  • Farrow, A., & Winograd, M. (2001). Land use modeling at the regional scale: An input to rural sustainability indicators for central America. Agriculture, Ecosystems and Environment, 85, 249–268.

    Article  Google Scholar 

  • Feng, D., Hong-Bo, S., Lun, S., Zong-Sou, L., & Ming-An, S. (2007). Secondary succession and its effects on soil moisture and nutrition in abandoned old-fields of hilly region of loess plateau, China. Colloids and Surfaces, 58, 278–285. doi:10.1016/j.colsurfb.2007.04.002.

    Article  Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201.

    Article  Google Scholar 

  • Geist, H. J., & Lambin, E. F. (2002). Proximate causes and underlying driving forces of tropical deforestation. Bioscience, 52(2), 143–150.

    Article  Google Scholar 

  • Giess, W. (1998). A preliminary vegetation map of Namibia (3rd revised edition). Dinteria, 4, 1–112.

    Google Scholar 

  • Girot, P. O. (1998). Feasibility for collaborative management schemes in forest conservation areas in Namibia (pp. 1–74). Windhoek: Directorate of Forestry, Ministry of Environment and Tourism.

    Google Scholar 

  • Jensen, J. R. (1996). Introductory digital image processing: A remote sensing perspective. US: Prentice Hall.

    Google Scholar 

  • Kamwi, J.M. (2003). Inventory report on the woody resources of Kwandu Community Forest. Unpublished report. Windhoek: Namibia–Finland Forestry Programme, Directorate of Forestry.

  • Kamwi, J. M., Chirwa, P. W. C., Manda, S. O. M., Graz, F. P., & Kätsch, C. (2015). Livelihoods, land use and land cover change in the Zambezi region (pp. 1–24). Windhoek, Namibia: Population and Environment.

  • Kasperson, J. X., Kasperson, R. E. & Turner, B. L. (1995). Regions at risk: Comparisons of threatened environments. United Nations Univ. Press.

  • Koizumi, T., Okabe, K., Thompson, I., Sugimura, K., Toma, T., & Fujita, K. (2010). The role of forest biodiversity in the sustainable use of ecosystem goods and services in agro-forestry, fisheries, and forestry. Ibaraki: Forestry and Forest Products Research Institute 106 pp. ISBN 978-4-902606-68-3.

    Google Scholar 

  • Lambin, E. F. (1997). Modelling and monitoring land-cover change processes in tropical regions. Progress in Physical Geography, 21, 375–393.

    Article  Google Scholar 

  • Lambin, E. F., & Geist, H. J. (2006). Land-use and land-cover change. Berlin: Springer Verlag ISBN: 978-3-540-32201-6.

    Book  Google Scholar 

  • Landis, J. R., & Koch, G. C. (1987). The measurement of observer agreement for categorical data. Biometrics, 33, 159–179.

    Article  Google Scholar 

  • Leica. (2007). Earth resources data analysis system (Erdas Imagine8.X). Heerbrugg: Leica Geosystems a. G.

    Google Scholar 

  • Levin, R., & Weiner, D. (1997). Towards the development of a popular and participatory land reform program in a democratic South Africa. In R. Levin & D. Weiner (Eds.), No more tears: Struggles for land in Mpumalanga, South Africa. Trenton: Africa World Press.

    Google Scholar 

  • Lillesand, T., Keifer, R., & Chipman, J. (2003). Remote sensing and image interpretation. New York: Wiley.

  • Lu, D., Moran, E., & Batistella, M. (2003). Linear mixture model applied to Amazonian vegetation classification. Remote Sensing of Environment, 87, 456–469.

    Article  Google Scholar 

  • Lu, D., Hetrick, S., Moran, E., & Li, G. (2012). Application of time series Landsat images to examining land-use/land-cover dynamic change. Photogrammetric Engineering & Remote Sensing, 78(7), 747–755.

    Article  Google Scholar 

  • Lucas, R. M., Honzak, M., Foody, G. M., Curran, P. J., & Corves, C. (1993). Characterizing tropical secondary forests using multi-temporal Landsat sensor imagery. International Journal of Remote Sensing, 14(16), 3061–3067.

    Article  Google Scholar 

  • Manandhar, R., Odeh, I. O. A., & Ancev, T. (2009). Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing, 1, 330–344.

    Article  Google Scholar 

  • Mango, L.M. (2010). Modeling the effect of land use and climate change scenarios on the water flux of the Upper Mara River Flow, Kenya. Available online: http://digitalcommons.fiu.edu/etd/159. Accessed 20 Sept 2015.

  • Mas, J. F. (1999). Monitoring land-cover changes: A comparison of change detection techniques. International Journal of Remote Sensing, 20, 139–152.

    Article  Google Scholar 

  • McCusker, B., & Weiner, D. (2003). GIS representations of nature, political Ecology, and the study of land use and land cover change in South Africa. In K. Zimmerer & T. Bassett (Eds.), Political Ecology: An integrative approach to Geography and environment-development studies (pp. 200–221). New York: Guilford.

    Google Scholar 

  • Mendelsohn, J., Jarvis, A., & Robertson, T. (2009). Atlas of Namibia: A portrait of the land and its people. Windhoek: Ministry of Environment and Tourism.

    Google Scholar 

  • Monserud, R. A. (1990). Method for comparing global vegetation map. Laxenburg: WP-90-40 II ASA.

    Google Scholar 

  • Moore, D. (1993). Contesting terrain in Zimbabwe’s eastern highlands. Economic Geography, 69, 380–402. doi:10.2307/143596.

    Article  Google Scholar 

  • Mortimore, M., Ba, M., Mahamane, A., Rostom, R. S., Pozo, P. S., & Turner, B. (2005). Changing systems and landscapes: Measuring and interpreting land use transformation in African drylands. Geografisk Tidsskrift. Danish Journal of Geography, 101(1), 101–118.

    Article  Google Scholar 

  • Murphree, M. W., & Cumming, D. H. M. (1993). Savanna land use: policy and practice in Zimbabwe. In The world’s Savanna’s: economic driving forces, ecological constraints and policy options for sustainable land use (pp. 139–178).

  • Nzunda, E. F. (2011). Sprouting, succession and tree species diversity in a South African coastal dune forest. Journal of Tropical Ecology, 27, 195–203. doi:10.1017/S0266467410000659.

    Article  Google Scholar 

  • Ojima, D. S., Galvin, K. A., Turner, B. L., Houghton, R. A., Skole, D. L., Chomentowsi, W. H., Salas, W. A., Nobre, A. D., Kummer, D. M., Moran, E. F., Mausel, P., Wu, Y., Ellis, J., Riebsame, W. E., Parton, W. J., Burke, I. C., Bohren, L., Young, R., Knop, E., & Brondizio, E. (1994). Global impact of land cover change. Bioscience, 44, 300–356.

    Article  Google Scholar 

  • Olson, J. M., Misan, S., Campbell, D. J., Mbonile, M., & Mugisha, S. (2004). Land use change impact and dynamics (LUCID) project working Paper. Nairobi: International Livestock Research Institute.

    Google Scholar 

  • Plourde, L., & Congalton, R. G. (2003). Sampling method and sample placement: How do they affect the accuracy of remotely sensed maps? Photogrammetric Engineering and Remote Sensing, 69, 289–297.

    Article  Google Scholar 

  • Rosenfield, G., & Fitzpatric-Lins, K. (1986). A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52(2), 223–227.

    Google Scholar 

  • Serra, P., Pons, X., & Saurí, D. (2003). Post-classification change detection with data from different sensors: Some accuracy considerations. International Journal of Remote Sensing, 24, 3311–3340.

    Article  Google Scholar 

  • Smith, J., Barau, A. D., Goldman, A., & Marek, J. H. (1994). The role of Technology in Agricultural Intensification: The evolution of maize production in the northern Guinea savanna of Nigeria. Economic Development and Cultural Change, 42(3), 537–554.

    Article  Google Scholar 

  • Smits, P. C., Dellepaine, S. G., & Schowengerdt, R. A. (1999). Quality assessment of image classification algorithms for land cover mapping: A review and a proposal for a cost based approach. International Journal of Remote Sensing, 20, 1461–1486.

    Article  Google Scholar 

  • Stefanov, W. L., Ramsey, M. S., & Christensen, P. R. (2001). Monitoring urban land cover change: An expert system approach to land cover classification of semi-arid to arid urban centers. Remote Sensing Environment, 77, 173–185.

    Article  Google Scholar 

  • Stuckens, J., Coppin, P. R., & Bauer, M. E. (2000). Integrating contextual information with per-pixel classification for improved land cover classification. Remote Sensing Environment, 71, 282–296.

    Article  Google Scholar 

  • Tokola, T., Löfman, S., & Erkkilä, A. (1999). Relative calibration of multitemporal Landsat data for forest cover change detection. Remote Sensing Environment, 68, 1–11.

    Article  Google Scholar 

  • Turner, B. L., & Meyer, W. B. (1994). Global land use and land cover change: An overview. In B. L. Turner & W. B. Meyer (Eds.), Changes in land use and land cover. Cambridge: Cambridge University Press.

    Google Scholar 

  • Turner, B. L., Lambin, E. F., & Reenberg, A. (2007). The emergence of land change science for global environmental change and sustainability. PNAS, 104, 2066–2071. doi:10.1073/pnas.0704119104.

    Google Scholar 

  • Verlinden, A., & Laamanen, R. (2006). Modeling woody vegetation resources using Landsat TM imagery in northern Namibia. Southern African Forestry Journal, 207, 27–39.

    Article  Google Scholar 

  • Waiganjo, C., & Ngugi, E. N. (2001). The effects of existing land tenure systems on land use in Kenya today. Nairobi: International Conference on Spatial Information for Sustainable Development.

    Google Scholar 

  • Yang, X., & Lo, C. P. (2002). Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Remote Sensing, 23, 1775–1798.

    Article  Google Scholar 

  • Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land-cover classification and change analysis of the town cites (Minnesota) metropolitan area by multi-temporal Landsat remote sensing. Remote Sensing of the Environment, 98, 165–172.

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the University of Pretoria and the Ministry of Agriculture, Water and Forestry in Namibia. We are also grateful for the financial support from the Southern African Science Service Centre for Climate Change and Adaptive Land Management (SASSCAL) task 033. Any errors are solely the responsibility of the authors and not of the funding agencies. This research complies with the current laws of the Republic of Namibia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Mutau Kamwi.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10661-017-5985-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamwi, J.M., Kaetsch, C., Graz, F.P. et al. Trends in land use and land cover change in the protected and communal areas of the Zambezi Region, Namibia. Environ Monit Assess 189, 242 (2017). https://doi.org/10.1007/s10661-017-5934-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5934-2

Keywords

Navigation