Distribution, characterization, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Ovia River, Southern Nigeria

  • Isioma TongoEmail author
  • Lawrence Ezemonye
  • Kingsley Akpeh


The levels and distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water, sediment, and fish (Clarias gariepinus) samples from Ovia River, Southern Nigeria, were evaluated, to assess the contamination profile, dietary intake, and human health risks associated with exposure. Results showed that naphthalene, acenaphthylene, and fluoranthene were the most dominant contaminant in water, sediment, and fish, respectively, with mean concentrations (μg/L) of 3.08, 45.4, and 90.7. Spatial distribution showed high occurrence of PAHs in Ekenwan, the downstream station, for all the matrices. Source identification using multivariate analysis revealed mixed patterns of pyrogenic and petrogenic origins. Estimated daily intake (EDI) of PAHs through fish consumption ranged from 2.18 × 10−7 to 5.23 × 10−5 mg/kg/day; values were however lower than the reference dose (RfD) indicating low risk. Estimated values for hazard quotients (HQs) and hazard index (HI) for both non-carcinogenic and carcinogenic risks were below 1 indicating low risk through dietary and non-dietary exposure to water, sediment, and fish from Ovia River. However, estimated HI values for direct ingestion of sediment were above 1, indicating the possibility of non-carcinogenic health risk from exposure. Carcinogenic risk indices also indicated low risk from fish consumption. In spite of the assessed low risk from exposure, continuous monitoring of PAH levels in this water body is imperative to prevent future human health effects.


PAHs Water Sediment Fish Sources Health risk 



The authors appreciate the contributions of Billy and Tonia.


  1. Adedayo, A., Adeyemi, D., Uyimandu, J., Chigome, S., & Anyakora, C. (2012). Evaluation of the levels of polycyclic aromatic hydrocarbons in surface and bottom waters of Lagos lagoon, Nigeria. African Journal of Pharmaceutical Sciences and Pharmacy, 3(1), 58–74.Google Scholar
  2. Anyakora, C., & Coker, H. (2006). Determination of polynuclear aromatic hydrocarbons (PAHs) in selected water bodies in the Niger Delta. African Journal of Biotechnology, 5, 2024–2031.Google Scholar
  3. Anyakora, C., Ogbeche, A., Palmer, P., & Coker, H. (2005). Determination of polynuclear aromatic hydrocarbons in marine samples of Siokolo Fishing Settlement. Journal of Chromatography A, 1073, 323–330. doi: 10.1016/j.chroma.2004.10.014.CrossRefGoogle Scholar
  4. APHA. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, D.C.: American Public Health Association.Google Scholar
  5. Bamforth, S., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80, 723–736. doi: 10.1002/jctb.1276.CrossRefGoogle Scholar
  6. Baumard, P., & Budzinski, H. (1997). Internal standard quantification method and gas chromatograph mass spectrometer (GC-MS): a reliable tool for polycyclic aromatic hydrocarbon (PAH) quantification in natural matrices. Analysis, 25, 246–252.Google Scholar
  7. CCME. (1989). Canadian water quality guidelines. Ottawa: Environment Canada, Canadian Council of Ministers of the Environment.Google Scholar
  8. Chen, S., & Liao, C. (2006). Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Science of the Total Environment, 366, 112–123. doi: 10.1016/j.scitotenv.2005.08.047.CrossRefGoogle Scholar
  9. Cheung, K., Leung, H., Kong, K., & Wong, M. (2007). Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere, 66, 460–468. doi: 10.1016/j. Chemosphere.2006.06.008.CrossRefGoogle Scholar
  10. Collier T., & Varanasi, U. (1991). Hepatic activities of xenobiotic metabolizing enzymes and biliary levels of xenobiotics in English Sole (Parophrys vetulus) exposed to environmental contaminants. Archives of Environmental Contamination and Toxicology, 20, 462–473.Google Scholar
  11. Daka, E., & Ugbomeh, U. (2013). Polycyclic aromatic hydrocarbons in sediment and tissues of the crab, Callinectes pallidus from the Azuabie Creek of the Upper Bonny Estuary in the Niger Delta. Research Journal of Applied Sciences, Engineering and Technology, 6, 2594–2600.Google Scholar
  12. Dennis, M., Massey, R., McWeeny, D., Knowles, M., & Watson, D. (1983). Analysis of polycyclic aromatic hydrocarbons in UK total diets. Food and Chemical Toxicology, 21, 569–574. doi: 10.1016/0278-6915(83)90142-4.CrossRefGoogle Scholar
  13. Dhananjayan, V., Muralidharan, S., & Peter, V. (2012). Occurrence and distribution of polycyclic aromatic hydrocarbons in water and sediment collected along the Harbour Line, Mumbai, India. International Journal of Oceanography, 2012, 1–7. doi: 10.1155/2012/403615.Google Scholar
  14. Ding, C., Ni, H., & Zeng, H. (2012). Parent and halogenated polycyclic aromatic hydrocarbons in rice and implications for human health in China. Environmental Pollution, 168, 80–86. doi: 10.1016/j.envpol.2012.04.025.CrossRefGoogle Scholar
  15. Doong, R., & Lin, Y. (2004). Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research, 38, 1733–1744. doi: 10.1016/j.watres.2003.12.042.CrossRefGoogle Scholar
  16. Duke, O. (2008). Source determination of polynuclear aromatic hydrocarbons in water and sediment of a creek in the Niger Delta region. African Journal of Biotechnology, 7, 282–285.Google Scholar
  17. Ezemonye, L. (2006). Polycyclic aromatic hydrocarbons (PAH) in aquatic environment of Niger Delta of Nigeria (surface water and sediment). International Journal of Chemistry, 6, 135–147.Google Scholar
  18. Ezemonye, L., Ikpesu, T., & Tongo, I. (2008). Distribution of lindane in water, sediment, and fish from the Warri River of the Niger Delta, Nigeria. Archives of Industrial Hygiene and Toxicology, 59, 261–270. doi: 10.2478/10004-1254-59-2008-1906.CrossRefGoogle Scholar
  19. Falco, G., Domingo, J., Llobet, J., Teixido, A., Casas, C., & Ller, L. (2003). Polycyclic aromatic hydrocarbons in foods: human exposure through the diet in Catalonia, Spain. Journal of Food Protection, 66, 2325–2331.CrossRefGoogle Scholar
  20. Federal Environmental Protection Agency (1991).Guideline and standard for environmental pollution control in Nigeria.
  21. Food Agriculture Organization (FAO) (2014). Fishery and aquaculture statistics 2014. Statistics and Information Service of the Fisheries and Aquaculture Department/Service. 2014, p. xvii. FAO, Rome, Roma.
  22. Gale, P., Reddy, K., & Graetz, D. (1992). Mineralization of sediment organic matter under anoxic conditions. Journal of Environment Quality 21, NP. doi: 10.2134/jeq1992.00472425002100030016x.
  23. Huang, T., Guo, Q., Tian, H., Mao, X., Ding, Z., Zhang, G., Li, J., Ma, J., & Gao, H. (2014). Assessing spatial distribution, sources, and human health risk of organochlorine pesticide residues in the soils of arid and semiarid areas of northwest China. Environmental Science and Pollution Research, 21, 6124–6135. doi: 10.1007/s11356-014-2505-8.CrossRefGoogle Scholar
  24. Hu, W. Y., Huang, B., Zhao, Y. C., Sun, W. X., & Gu, Z. Q. (2011). Organochlorine pesticides in soils from a Typical Alluvial Plain of the Yangtze River Delta region, China. Bulletin of Environmental Contamination and Toxicology, 87(5), 561–566.Google Scholar
  25. Imoobe, T., & Adeyinka, M. (2009). Zooplankton-based assessment of the trophic state of a tropical forest river in Nigeria. Archives of Biological Sciences (Beogr.), 61, 733–740. doi: 10.2298/abs0904733i.CrossRefGoogle Scholar
  26. Isibor, P. O., Oluowo, E. F., & Izegaegbe, J. I. (2016). Analysis of heavy metals and total hydrocarbons in water and sediment of Ovia River, in Ovia North East Local Government of Edo State, Nigeria. International Research Journal of Public and Environmental Health, 3(10), 234–243.Google Scholar
  27. Jaward, F., Alegria, H., Galindo Reyes, J., & Hoare, A. (2012). Levels of PAHs in the waters, sediments, and shrimps of Estero de Urias, an estuary in Mexico, and their toxicological effects. The Scientific World Journal, 2012, 1–9. doi: 10.1100/2012/687034.CrossRefGoogle Scholar
  28. Jing, N., Shi, J., Duan, X., Wang, B., Huang, N., & Zhao, X. (2013). Health risk assessment of dietary exposure to polycyclic aromatic hydrocarbons in Taiyuan, China. Journal of Environmental Sciences, 26, 432–439.Google Scholar
  29. Kabzinski, A., Cyran, J., & Juszezak, R. (2002). Determination of polycyclic aromatic hydrocarbons in water (including drinking water) of Lodz. Polish Journal of Environmental Studies, 11, 695–706.Google Scholar
  30. Kafilzadeh, F., Shiva, A., & Malekpour, R. (2011). Determination of polycyclic aromatic hydrocarbons (PAHs) in water and sediments of the Kor River, Iran. Middle-East Journal of Scientific Research, 10, 01–07.Google Scholar
  31. Kim, G., Maruya, K., Lee, R., Lee, J., Koh, C., & Tanabe, S. (1999). Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea. Marine Pollution Bulletin, 38, 7–15. doi: 10.1016/s0025-326x(99)80006-x.CrossRefGoogle Scholar
  32. Koh, C., Khim, J., Kannan, K., Villeneuve, D., Senthilkumar, K., & Giesy, J. (2004). Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs) and 2,3,7,8-TCDD equivalents (TEQs) in sediment from the Hyeongsan River, Korea. Environmental Pollution, 132, 489–501. doi: 10.1016/j.envpol.2004.05.001.CrossRefGoogle Scholar
  33. Kolpin, D., Thurman, E., Lee, E., Meyer, M., Furlong, E., & Glassmeyer, S. (2006). Urban contributions of glyphosate and its degradate AMPA to streams in the United States. Science of the Total Environment, 354, 191–197. doi: 10.1016/j.scitotenv.2005.01.028.CrossRefGoogle Scholar
  34. Lee, R., Gardner, W., Anderson, J., Blaylock, J., & Barwell-Clarke, J. (1978). Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures. Environmental Science & Technology, 12, 832–838. doi: 10.1021/es60143a007.CrossRefGoogle Scholar
  35. Liang, Y., Tse, M., Young, L., & Wong, M. (2007). Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes Nature Reserve, Hong Kong. Water Research, 41, 1303–1311. doi: 10.1016/j.watres.2006.11.048.CrossRefGoogle Scholar
  36. Mohammed, A., Al-Taee, M., & Hassan, F. (2009). The study of some PAH compounds in Euphrates River sediment from Al-Hindiya Barrageto Al-Kifil city, Iraq. In: 4Th Scientific Conference, College Of Science. CSASC English, pp. 4: 216–230.Google Scholar
  37. Mwevura, H., Othman, O., & Mhehe, G. (2002). Organochlorine pesticide residues in sediments and biota from the coastal area of Dar es Salaam city, Tanzania. Marine Pollution Bulletin, 45, 262–267. doi: 10.1016/s0025-326x(01)00331-9.CrossRefGoogle Scholar
  38. Nasr, I., Arief, M., Abdel-Aleem, A., & Malhat, F. (2010). Polycyclic aromatic hydrocarbons (PAHs) in aquatic environment at El Menofiya Governorate, Egypt. Journal of Applied Sciences Research, 6, 13–21.Google Scholar
  39. Neff, J. (1979). Polycyclic aromatic hydrocarbons in the aquatic environment. London: Applied Science Publishers.Google Scholar
  40. Nisbet, I., & LaGoy, P. (1992). Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology, 16, 290–300. doi: 10.1016/0273-2300(92)90009-x.CrossRefGoogle Scholar
  41. Nkpaa, K., Essien, E., & Wegwu, M. (2013). Evaluation of polycyclic aromatic hydrocarbon (PAH) concentrations in crabs and shrimps from crude oil polluted waters of ogoniland in rivers state, Nigeria. IOSR Journal of Environmental Science, Toxicology and Food Technology, 4, 73–80. doi: 10.9790/2402-0467380.CrossRefGoogle Scholar
  42. Obiakor, M., Okonkwo, J., Ezeonyejiaku, C., & Okonkwo, C. (2014). Polycyclic aromatic hydrocarbons (PAHs) in freshwater media: factorial effects and human dietary exposure risk assessment. Resources and Environment, 4, 247–259.Google Scholar
  43. Ogbeibu, A., Ezemonye, L., & Uyigue, E. (2001). The crustacean zooplankton of the Ovia River, Southern Nigeria. Nigerian Journal of Applied Science, 19, 36–42.Google Scholar
  44. Olomukoro, J., & Ezemonye, L. (2007). Assessment of the macro-invertebrate fauna of rivers in southern Nigeria. African Zoology, 42, 1–11. doi: 10.3377/1562-7020(2007)42[1:aotmfo];2.CrossRefGoogle Scholar
  45. Omoigberale, M., & Ogbeibu, A. (2005). Assessing the environmental impact of oil exploration and production on the Osse River, Southern Nigeria. 1: Heavy metals. African Journal of Environmental Pollution and Health, 4, 26–32.Google Scholar
  46. Ostrander, G., Anderson, J., Fisher, J., Landolt, M., & Kocan, R. R. (1990). Decreased performance of rainbow trout Oncorhynchus mykiss emergency behaviours following embryonic exposure to benzo(a)pyrene. Fish Bulletin, 88, 551–555.Google Scholar
  47. Palm, L. M. N., Carboo, D. Yeboah, P. O., Quasie, W. J., Gorleku, M. A., & Darko, A. (2011).Characterization of polycyclic aromatic hydrocarbons (PAHs) present in smoked fish from Ghana. Advance Journal of Food Science and Technology, 3(5), 332–338.Google Scholar
  48. Papadakis, E. N., Vryzas, Z., Kotopoulou, A., Kintzikoglou, K., Makris, K. C., & Papadopoulou-Mourkidou, E. (2015). A pesticide monitoring survey in rivers and lakes of northern Greece and its human and ecotoxicological risk assessment. Ecotoxicology and Environmental Safety, 116, 1–9.CrossRefGoogle Scholar
  49. Perra, G., Renzi, M., Guerranti, C., & Focardi, S. (2009). Polycyclic aromatic hydrocarbons pollution in sediments: distribution and sources in a lagoon system (Orbetello, Central Italy). Transitional Waters Bulletin, 3, 45–58.Google Scholar
  50. Peruzzo, P., Porta, A., & Ronco, A. (2008). Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in North Pampasic Region of Argentina. Environmental Pollution, 156, 61–66. doi: 10.1016/j.envpol.2008.01.015.CrossRefGoogle Scholar
  51. Qiu, Y., Zhang, G., Liu, G., Guo, L., Li, X., & Wai, O. (2009). Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China. Estuarine, Coastal and Shelf Science, 83, 60–66. doi: 10.1016/j.ecss.2009.03.018.CrossRefGoogle Scholar
  52. Qu, C., Qi, S., Yang, D., Huang, H., Zhang, J., Chen, W., Yohannes, H., Sandy, E., Yang, J., & Xing, X. (2015). Risk assessment and influence factors of organochlorine pesticides (OCPs) in agricultural soils of the hill region: a case study from Ningde, southeast China. Journal of Geochemical Exploration, 149, 43–51. doi: 10.1016/j.gexplo.2014.11.002.CrossRefGoogle Scholar
  53. Ravindra, Mittal, A., & Van Grieken, R. (2001). Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons: a review. Reviews on Environmental Health, 16(3). doi: 10.1515/reveh.2001.16.3.169.
  54. Rhea, D. T., et al. (2005). Polycyclic aromatic hydrocarbons in water, sediment, and snow, from lakes in Grand Teton National Park, Wyoming. Final Report, USGS-CERC, 91344(2005), 1–29.Google Scholar
  55. Shi, Z., Tao, S., Pan, B., Liu, W., & Shen, W. (2007). Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China. Environmental Pollution, 146, 492–500. doi: 10.1016/j.envpol.2006.07.009.CrossRefGoogle Scholar
  56. Simpson, C., Mosi, A., Cullen, W., & Reimer, K. (1996). Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada. Science of the Total Environment, 181, 265–278. doi: 10.1016/0048-9697(95)05026-4.CrossRefGoogle Scholar
  57. Simpson, C., Harrington, C., Cullen, W., Bright, D., & Reimer, K. (1998). Polycyclic aromatic hydrocarbon contamination in marine sediments near Kitimat, British Columbia. Environmental Science & Technology, 32, 3266–3272. doi: 10.1021/es970419y.CrossRefGoogle Scholar
  58. Soclo, H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396. doi: 10.1016/s0025-326x(99)00200-3.CrossRefGoogle Scholar
  59. Sun, C., Zhang, J., Ma, Q., & Chen, Y. (2015). Human health and ecological risk assessment of 16 polycyclic aromatic hydrocarbons in drinking source water from a large mixed-use reservoir. International Journal of Environmental Research and Public Health, 12, 13956–13969.CrossRefGoogle Scholar
  60. Tsai, P., Shieh, H., Lee, W., & Lai, S. (2001). Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry. Science of the Total Environment, 278, 137–150. doi: 10.1016/s0048-9697(01)00643-x.CrossRefGoogle Scholar
  61. Tongo, I., & Ezemonye, L. I. N. (2015). Human Health Risks Associated with Residual Pesticide Levels in Edible Tissues of Slaughtered Cattle in Benin City, Southern Nigeria. Toxicology Report, 2, 1117–1135. doi: 10.1016/j.toxrep.2015.07.008.
  62. US Environmental Protection Agency (USEPA). (1993). Provisional guidance for quantitative risk assessment of polycyclic aromatic hydrocarbons. EPA/600/R-93/089. U.S. Environmental Protection Agency. Washington, DC: Office of Research and Development, 1993.Google Scholar
  63. US Environmental Protection Agency (USEPA). (1997). Exposure factors handbook. Washington, DC: US Environmental Protection Agency, 1997.Google Scholar
  64. US Environmental Protection Agency (USEPA). (2000). Guidance for assessing chemical contaminant, data for use in fish advisories, Vol. 1 fish sampling and analysis (3rd ed.). Washington, DC: EPA Office of Water, 2000.Google Scholar
  65. US Environmental Protection Agency (USEPA) (2005). Guidelines for carcinogen risk assessment, EPA/630/P-03/001F, March 2005.Google Scholar
  66. US Environmental Protection Agency (USEPA) (1992). Guidelines for exposure assessment. Risk Assessment Forum and U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  67. US EPA, (1986). Analysis of polynuclear aromatic hydrocarbons. Method 8100. US Environmental Protection Agency.Google Scholar
  68. White, P., Robitaille, S., & Rasmussen, J. (1999). Heritable reproductive effects of benzo[a]pyrene on the fathead minnow (Pimephales promelas). Environmental Toxicology and Chemistry, 18, 1843–1847. doi: 10.1002/etc.5620180835.CrossRefGoogle Scholar
  69. Witt, G. (1995). Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, 31, 237–248. doi: 10.1016/0025-326x(95)00174-l.CrossRefGoogle Scholar
  70. World Health Organization (WHO). (1993). WHO guidelines for drinking water quantity (2nd ed.p. 1993). Geneva: World Health Organization.Google Scholar
  71. Wu, W., Ning Qin, N., He, W., He, Q., Ouyang, H., & Xu, F. (2012). Levels, Distribution, and Health Risks of Polycyclic Aromatic Hydrocarbons in Four Freshwater Edible Fish Species from the Beijing Market. The Scientific World Journal, 2012, 1–12. doi: 10.1100/2012/156378.
  72. Xia, Z., Duan, X., Qiu, W., Liu, D., Wang, B., Tao, S., Jiang, Q., Lu, B., Song, Y., & Hu, X. (2010). Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Science of the Total Environment, 408, 5331–5337. doi: 10.1016/j.scitotenv.2010.08.008.CrossRefGoogle Scholar
  73. Yoon, E., et al. (2007). Estimation of excess cancer risk on time-weighted lifetime average daily intake of PAHs from food ingestion. Human Ecological Risk Assessment, 13(3), 669–680.CrossRefGoogle Scholar
  74. Zeng, E., & Vista, C. (1997). Organic pollutants in the coastal environment off San Diego, California. 1. Source identification and assessment by compositional indices of polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 16, 179–188. doi: 10.1002/etc.5620160212.CrossRefGoogle Scholar
  75. Zhang, Z., Huang, J., Yu, G., & Hong, H. (2004). Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution, 130, 249–261. doi: 10.1016/j.envpol.2003.12.002.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Isioma Tongo
    • 1
    Email author
  • Lawrence Ezemonye
    • 1
  • Kingsley Akpeh
    • 1
  1. 1.Laboratory of Ecotoxicology and Environmental Forensics, Department of Animal and Environmental Biology, Faculty of Life SciencesUniversity of BeninBeninNigeria

Personalised recommendations