Skip to main content
Log in

Use of three monitoring approaches to manage a major Chrysosporum ovalisporum bloom in the Murray River, Australia, 2016

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

An unusual bloom of Chrysosporum ovalisporum (basionym Aphanizomenon ovalisporum) occurred for the first time in the Murray River and distributary rivers in New South Wales, Australia, from mid-February to early June 2016. At its greatest extent, it contaminated a combined river length of ca. 2360 km. Chrysosporum ovalisporum usually comprised >99% of the total bloom biovolume at most locations sampled, which at times exceeded 40 mm3 l−1. The origins of the bloom were most likely reservoirs on the upper Murray River, with cyanobacterial-infested water released from them contaminating the river systems downstream. An integrated approach using three analytical methods: (1) identification and enumeration by microscopy, (2) multiplex quantitative polymerase chain reaction (qPCR), and (3) toxin analysis, was used to obtain data for the assessment of risk to water users and management of the bloom. qPCR indicated some cyrA and stxA genes responsible for cylindrospermopsin and saxitoxin biosynthesis respectively were present, but mostly below the level of quantification. No mcyE genes for microcystin biosynthesis were detected. Toxin analysis also revealed that cylindrospermopsin, saxitoxin and microcystin were all below detection. Lack of measurable toxicity in a species usually considered a cylindrospermopsin producer elsewhere meant the possibility of relaxing management guidelines; however, high (Red) alerts needed to be maintained due to risk to water users from other biohazards potentially produced by the cyanobacteria such as contact irritants. A three-tiered monitoring strategy is suggested for monitoring cyanobacterial blooms to provide enhanced data for bloom management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akcaalan, R., Köker, L., Oğuz, L., Spoof, L., Meriluoto, J., & Albay, M. (2014). First report of cylindrospermopsin production by two cyanobacteria (Dolichospermum mendotae and Chrysosporum ovalisporum) in Lake Iznik, Turkey. Toxins, 6(11), 3173–3186. doi:10.3390/toxins6113173.

    Article  Google Scholar 

  • Al-Tebrineh, J., Merrick, C., Ryan, D., Humpage, A., Bowling, L., & Neilan, B. A. (2012a). Community composition, toxigenicity, and environmental conditions during a cyanobacterial bloom occurring along 1,100 kilometers of the Murray River. Applied and Environmental Microbiology, 78(1), 263–272. doi:10.1128/AEM.05587-11.

    Article  CAS  Google Scholar 

  • Al-Tebrineh, J., Pearson, L. A., Yasar, S. A., & Neilan, B. A. (2012b). A multiplex qPCR targeting hepato- and neurotoxigenic cyanobacteria of global significance. Harmful Algae, 15, 19–25. doi:10.1016/j.hal.2011.11.001.

    Article  CAS  Google Scholar 

  • Atoui, A., Hafez, H., & Slim, K. (2013). Occurrence of toxic cyanobacterial blooms for the first time in Lake Karaoun, Lebanon. Water and Environment Journal, 27(1), 42–49. doi:10.1111/j.1747-6593.2012.00324.x.

    Article  CAS  Google Scholar 

  • Baker, P. D. (1991). Identification of common noxious cyanobacteria. Part I—Nostocales. Research Report No. 29. Melbourne: Urban Water Research Association of Australia.

    Google Scholar 

  • Baker, P. D. (1992). Identification of common noxious cyanobacteria. Part II—Chroococcales, Oscillatoriales. Research Report No. 46. Melbourne: Urban Water Research Association of Australia.

    Google Scholar 

  • Baker, P. D., & Fabbro, L. D. (1999). A guide to the identification of common blue-green algae (Cyanoprokaryotes) in Australian freshwaters. Identification Guide No. 25. Albury: Cooperative Research Centre for Freshwater Ecology.

    Google Scholar 

  • Baker, P. D., & Humpage, A. R. (1994). Toxicity associated with commonly occurring cyanobacteria in surface waters of the Murray-Darling Basin, Australia. Australian Journal of Marine and Freshwater Research, 45(5), 773–786. doi:10.1071/MF9940773.

    Article  CAS  Google Scholar 

  • Baldwin, D. S., Wilson, J., Gigney, H., & Boulding, A. (2010). Influence of extreme drawdown on water quality downstream of a large water storage reservoir. River Research and Applications, 26(2), 194–206. doi:10.1002/rra.1255.

    Google Scholar 

  • Bar-Yosef, Y., Murik, O., Sukenik, A., Hadas, O., & Kaplan, A. (2012). Multiannual variations in phytoplankton populations: what distinguished the blooms of Aphanizomenon ovalisporum in Lake Kinneret in 2010 from 2009? Environmental Microbiology Reports, 4(5), 498–503. doi:10.1111/j.1758-2229.2012.00351.x.

    Article  CAS  Google Scholar 

  • Bowling, L. C., & Baker, P. D. (1996). Investigation into the major cyanobacterial bloom in the Barwon-Darling River, Australia, of 1991, and underlying limnological features. Marine and Freshwater Research, 47(4), 643–657. doi:10.1071/MF9960643.

    Article  CAS  Google Scholar 

  • Bowling, L. C., Merrick, C., Swann, J., Green, D., Smith, G., & Neilan, B. A. (2013). Effects of hydrology and river management on the distribution, abundance and persistence of cyanobacterial blooms in the Murray River, Australia. Harmful Algae, 30, 27–36. doi:10.1016/j.hal.2013.08.002.

    Article  Google Scholar 

  • Bowling, L., Egan, S., Holliday, J., & Honeyman, G. (2016). Did spatial and temporal variations in water quality influence cyanobacterial abundance, community composition and cell size in the Murray River, Australia during a drought-affected low-flow summer? Hydrobiologia, 765, 359–377. doi:10.1007/s10750-015.2430-y.

    Article  Google Scholar 

  • Bradley, W. G., Borenstein, A. R., Nelson, M., Codd, G. A., Rosen, B. H., Stommel, E. W., & Cox, P. A. (2013). Is exposure to cyanobacteria an environmental risk factor for amyotrophic lateral sclerosis and other neurodegenerative disease? Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 14(5–6), 325–333. doi:10.3109/21678421.2012.750364.

    Article  CAS  Google Scholar 

  • Chorus, I. (2012). Introduction. In I. Chorus (Ed.), Current approaches to cyanotoxin risk assessment in different countries (pp. 2–15) . Dessau-Roßlau: Federal Environment Agency (Umweltbundesamt).Texte 63, 2012

    Google Scholar 

  • Cirés, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom-forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21–43. doi:10.1016/j.hal.2015.09.007.

    Article  Google Scholar 

  • Cirés, S., Wörmer, L., Wiedner, C., & Quesada, A. (2013). Temperature-dependent dispersal strategies of Aphanizomenon ovalisporum (Nostocales, cyanobacteria): implications for the annual life cycle. Microbial Ecology, 65(1), 12–21. doi:10.1007/s00248-012-0109-8.

    Article  Google Scholar 

  • Cirés, S., Wörmer, L., Ballot, A., Agha, R., Wiedner, C., Velázquez, D., Casero, M. C., & Quesada, A. (2014). Phylogeography of cylindrospermopsin and paralytic shellfish toxin-producing Nostocales cyanobacteria from Mediterranean Europe (Spain). Applied and Environmental Microbiology, 80(4), 1359–1370. doi:10.1128/AEM.03002-13.

    Article  Google Scholar 

  • Dahlmann, J., & Luckas, B. (2010). Analysis of selected microcystins in drinking and surface water using a highly sensitive direct injection technique. Publication No. 1830410–01. Foster City: Food & Environmental, AB SCIEX.

    Google Scholar 

  • Dell’Aversano, C., Eaglesham, G. K., & Quilliam, M. A. (2004). Analysis of cyanobacterial toxins by hydrophilic interaction liquid chromatography-mass spectrometry. Journal of Chromatography A, 1028(1), 155–164. doi:10.1016/j.chroma.2003.11.083.

    Article  Google Scholar 

  • Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J., Pitts, K. L., Riley, A. J., Schloesser, J. T., & Thornbrugh, D. J. (2009). Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science and Technology, 43(1), 12–19. doi:10.1021/es801217q.

    Article  CAS  Google Scholar 

  • Everson, S., Fabbro, L., Kinnear, S., Eaglesham, G., & Wright, P. (2009). Distribution of the cyanobacterial toxins cylindrospermopsin and deoxycylindrospermopsin in a stratified lake in north-eastern New South Wales, Australia. Marine and Freshwater Research, 60(1), 25–33. doi:10.1071/MF08115.

    Article  CAS  Google Scholar 

  • Fadel, A., Atoui, A., Lemaire, B. J., Vinҫon-Leite, B., & Slim, K. (2014). Dynamics of the toxin cylindrospermopsin and the cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum in a Mediterranean eutrophic reservoir. Toxins, 6(11), 3041–3057. doi:10.3390/toxins6113041.

    Article  CAS  Google Scholar 

  • Falconer, I., Bartram, J., Chorus, I., Kuiper-Goodman, T., Utkilen, H., Burch, M., & Codd, G. A. (1999). Safe levels and safe practices. In I. Chorus & J. Bartram (Eds.), Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management (pp. 155–178). London: E & FN Spon.

    Google Scholar 

  • Fergusson, K. M., & Saint, C. P. (2003). Multiplex PCR assay for Cylindrospermopsis raciborskii and cylindrospermopsin-producing cyanobacteria. Environmental Toxicology, 18(2), 120–125. doi:10.1002/tox.10108.

    Article  CAS  Google Scholar 

  • Gkelis, S., Moustaka-Gouni, M., Sivonen, K., & Lanaras, T. (2005). First report of the cyanobacterium Aphanizomenon ovalisporum Forti in two Greek lakes and cyanotoxin occurrence. Journal of Plankton Research, 27(12), 1295–1300. doi:10.1093/plankt/fbi085.

    Article  CAS  Google Scholar 

  • Grabowska, M., & Mazur-Marzec, H. (2016). The influence of hydrological conditions on phytoplankton community structure and cyanopeptide concentration in dammed lowland river. Environmental Monitoring and Assessment, 188(8), 488. doi:10.1007/s10661-016-5506-x.

    Article  Google Scholar 

  • Hadas, O., Pinkas, R., Malinsky-Rushansky, N., Nishri, A., Kaplan, A., Rimmer, A., & Sukenik, A. (2012). Appearance and establishment of diazotrophic cyanobacteria in Lake Kinneret, Israel. Freshwater Biology, 57(6), 1214–1227. doi:10.1111/j.1365-2427.2012.02792.x.

    Article  CAS  Google Scholar 

  • Hadas, O., Kaplan, A., & Sukenik, A. (2015). Long-term changes in cyanobacterial populations in Lake Kinneret (Sea of Galilee), Israel: an eco-physiological outlook. Life, 5(1), 418–431. doi:10.3390/life5010418.

    Article  Google Scholar 

  • Hilborn, E. D., & Beasley, V. R. (2015). One health and cyanobacteria in freshwater systems: animal illness and deaths are sentinel events for human health risks. Toxins, 7(4), 1374–1395. doi:10.3390/toxins7041374.

    Article  CAS  Google Scholar 

  • Hötzel, G., & Croome, R. (1999). A phytoplankton methods manual for Australian freshwaters. LWRRDC occasional paper 22/99. Canberra: Land and Water Resources Research and Development Corporation.

    Google Scholar 

  • Humpage, A., Gaget, V., Lau, M., Froscio, S., & Laingam, S. (2013). CyanoSurvey: a national update on toxic cyanobacteria and their distribution. Final Report Project 1022. Adelaide: Water Research Australia Limited.

    Google Scholar 

  • Ibelings, B. W., Fournie, J. W., Hilborn, E. D., Codd, G. A., Coveney, M., Dyble, J., Havens, K., Landsberg, J., & Litaker, W. (2008). Ecosystem effects workgroup report. In H. K. Hednell (Ed.), Cyanobacterial harmful algal blooms: state of the science and research needs. Dordrecht: Springer Advances in Experimental Medicine and Biology, 619, pp. 654-674.

    Google Scholar 

  • Ibelings, B. W., Backer, L. C., Kardinaal, W. E. A., & Chorus, I. (2014). Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae, 40, 63–74. doi:10.1016/j.hal.2014.10.002.

    Article  CAS  Google Scholar 

  • Kaushik, R., & Balasubramanian, R. (2013). Methods and approaches used for detection of cyanotoxins in environmental samples: a review. Critical Reviews in Environmental Science and Technology, 43(13), 1349–1383. doi:10.1080/10643389.2011.644224.

    Article  CAS  Google Scholar 

  • Lee, T. A., Rollwagen-Bollens, G., Bollens, S. M., & Faber-Hammond, J. J. (2015). Environmental influence on cyanobacteria abundance and microcystin toxin production in a shallow temperate lake. Ecotoxicology and Environmental Safety, 114, 318–325. doi:10.1016/j.ecoenv.2014.05.004.

    Article  CAS  Google Scholar 

  • Mackay, N., & Eastburn, D. (Eds.). (1990). The Murray. Canberra: Murray Darling Basin Commission.

    Google Scholar 

  • McGregor, G. B., & Fabbro, L. D. (2001). A guide to the identification of Australian freshwater planktonic Chroococcales (Cyanoprokaryota/Cyanobacteria). Identification Guide No. 39. Albury: Cooperative Research Centre for Freshwater Ecology.

    Google Scholar 

  • Mehnert, G., Leunert, F., Cirés, S., Jöhnk, K. D., Rücker, J., Nixdorf, B., & Wiedner, C. (2010). Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature regimes. Journal of Plankton Research, 30(7), 1009–1021. doi:10.1093/plankt/fbq033.

    Article  Google Scholar 

  • Messineo, V., Melchiorre, S., di Corcia, A., Gallo, P., & Bruno, M. (2010). Seasonal succession of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum blooms with cylindrospermopsin occurrence in the volcanic Lake Albano, central Italy. Environmental Toxicology, 25(1), 18–27. doi:10.1002/tox.20469.

    CAS  Google Scholar 

  • National Health and Medical Research Council. (2008). Guidelines for managing risks in recreational water. Canberra: National Health and Medical Research Council.

    Google Scholar 

  • Otten, T. G., Crosswell, J. R., Mackey, S., & Dreher, T. W. (2015). Application of molecular tools for microbial source tracking and public risk assessment of a Microsystis bloom traversing 300 km of the Klamath River. Harmful Algae, 46, 71–81. doi:10.1016/j.hal.2015.05.007.

    Article  Google Scholar 

  • Pacheco, A. B. F., Guedes, I. A., & Azevedo, S. M. F. O. (2016). Is qPCR a reliable indicator of cyanotoxin risk in freshwater? Toxins, 8(6), 172. doi:10.3390/toxins8060172.

    Article  Google Scholar 

  • Pilotto, L. S. (2008). Epidemiology of cyanobacteria and their toxins. In H. K. Hednell (Ed.), Cyanobacterial harmful algal blooms: state of the science and research needs. Dordrecht: Springer Advances in Experimental Medicine and Biology, 619, 639-649.

    Google Scholar 

  • Pilotto, L. S., Douglas, R. M., Burch, M. D., Cameron, S., Beers, M., Rouch, G. J., Robinson, P., Kirk, M., Cowie, C. T., Hardiman, S., Moore, C., & Attewell, R. G. (1997). Health effects of exposure to cyanobacteria (blue-green algae) during recreational water-related activities. Australian and New Zealand Journal of Public Health, 21(6), 562–566. doi:10.1111/j.1467-842X.1997.tb01755.x.

    Article  CAS  Google Scholar 

  • Pilotto, L., Hobson, P., Burch, M. D., Ranmuthugala, G., Attewell, R., & Weightman, W. (2004). Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Australian and New Zealand Journal of Public Health, 28(3), 220–224. doi:10.1111/j.1467-842X.2004.tb00699.x.

    Article  Google Scholar 

  • Pollingher, U., Hadas, O., Yacobi, Y. Z., Zohary, T., & Berman, T. (1998). Aphanizomenon ovalisporum (Forti) in Lake Kinneret, Israel. Journal of Plankton Research, 20(7), 1321–1339. doi:10.1093/plankt/20.7.1321.

    Article  Google Scholar 

  • Quesada, A., Moreno, E., Carrasco, D., Paniagua, T., Wörmer, L., de Hoyos, C., & Sukenik, A. (2006). Toxicity of Aphanizomenon ovalisporum (Cyanobacteria) in a Spanish water reservoir. European Journal of Phycology, 41(1), 39–45. doi:10.1080/09670260500480926.

    Article  CAS  Google Scholar 

  • Shaw, G. R., Sukenik, A., Livne, A., Chiswell, R. K., Smith, M. J., Seawright, A. A., Norris, R. L., Eaglesham, G. K., & Moore, M. R. (1999). Blooms of the cylindrospermopsin containing cyanobacterium, Aphanizomenon ovalisporum (Forti), in newly constructed lakes, Queensland, Australia. Environmental Toxicology, 14(1), 167–177. doi:10.1002/(SICI)1522-7278(199902)14:1<167::AID-TOX22>3.0.CO;2-O.

    Article  CAS  Google Scholar 

  • Srivastava, A., Singh, S., Ahn, C.-Y., Oh, H.-M., & Asthana, R. K. (2013). Monitoring approaches for a toxic cyanobacterial bloom. Environmental Science and Technology, 47(16), 8999–9013. doi:10.1021/es401245k.

    Article  CAS  Google Scholar 

  • Steffensen, D. A. (2008). Economic cost of cyanobacterial blooms. In H. K. Hednell (Ed.), Cyanobacterial harmful algal blooms: state of the science and research needs. Dordrecht: Springer Advances in Experimental Medicine and Biology, 619, pp 855-865.

    Google Scholar 

  • Stewart, I., Schluter, P. J., & Shaw, G. R. (2006a). Cyanobacterial lipopolysaccharides and human health—a review. Environmental Health: A Global Access Science Source, 5, 7. doi:10.1186/1476-069X-5-7.

    Article  Google Scholar 

  • Stewart, I., Webb, P. M., Schluter, P. J., Fleming, L. E., Burns, J. W., Gantar, M., Backer, L. C., & Shaw, G. R. (2006b). Epidemiology of recreational exposure to freshwater cyanobacteria—an international prospective cohort study. BMC Public Health, 6, 93. doi:10.1186/1471-2458-6-93.

    Article  Google Scholar 

  • Stewart, I., Robertson, I. M., Webb, P. M., Schluter, P. J., & Shaw, G. R. (2006c). Cutaneous hypersensitivity reactions to freshwater cyanobacteria—human volunteer studies. BMC Dermatology, 6, 6. doi:10.1186/1471-5945/6/6.

    Article  Google Scholar 

  • Sukenik, A., Hadas, O., Kaplan, A., & Quesada, A. (2012). Invasion of Nostocales (cyanobacteria) to subtropical and temperate freshwater lakes—physiological, regional, and global driving forces. Frontiers in Microbiology, 3(86), 1–9. doi:10.3389/fmicb.2012.00086.

  • Sukenik, A., Quesada, A., & Salmaso, N. (2015). Global expansion of toxic and non-toxic cyanobacteria: effect of ecosystem functioning. Biodiversity and Conservation, 24(4), 889–908. doi:10.1007/s10531-015-0905-9.

    Article  Google Scholar 

  • Victorian Department of Sustainability and Environment (2007). Biovolume calculator. Available at http://www.depi.vic.gov.au/water/rivers-estuaries-and-wetlands/blue-green-algae/blue-green-algae-resources. Accessed 25 October 2016.

Download references

Acknowledgements

We thank Gordon Honeyman, Andy Wise, Gerhard Schulz and others for the collection of samples along the Murray River and elsewhere during the bloom; and Water NSW for the provision of data from Lake Hume. Dr. Choon Wong from the Forensic and Analytical Science Service laboratory, NSW Health, is thanked for the toxin analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Bowling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crawford, A., Holliday, J., Merrick, C. et al. Use of three monitoring approaches to manage a major Chrysosporum ovalisporum bloom in the Murray River, Australia, 2016. Environ Monit Assess 189, 202 (2017). https://doi.org/10.1007/s10661-017-5916-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5916-4

Keywords

Navigation