Skip to main content

Advertisement

Log in

Factors related to Secchi depths and their stability over time as determined from a probability sample of US lakes

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

A probabilistic sample of lakes in the 48 coterminous US lakes was made by the United States Environmental Protection Agency in the 2007 National Lakes Assessment. Because of the statistical design, the results of our analyses of Secchi depths (SD) apply to a population of 45,265 lakes. We found statistically significant differences in mean Secchi depths between natural (1.57 m) and man-made lakes (1.18 m). The most important variable correlated with SD was turbidity, an optical measure related to suspended particles in the water column. For most lakes, chlorophyll a was highly correlated with both turbidity and SD, but several lakes had more turbidity and lower SD than expected based on chlorophyll a alone, indicating that non-algal suspended solids were an important factor. On an ecoregion basis, the non-algal suspended solids in the lake waters were related to the average levels of suspended solids in streams located in that ecoregion, and the non-algal suspended solids were more important in man-made than natural lakes. Phosphorus and nitrogen were directly correlated with chlorophyll a and turbidity and inversely correlated with SD. Based on diatom-inferred Secchi depths for the tops and bottoms of sediment cores from lakes in Ecoregions VIII and VII (excluding lakes in Minnesota) representing 40% of the natural lakes in the US, there has been no decrease in water transparency in that population of lakes in the past 70 or more years when the US population increased by 134%. We do not have information to determine if the other 60% of lakes have or have not changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arruda, J. A., Marzolf, G. R., & Faulk, R. T. (1983). The role of suspended sediments in the nutrition of zooplankton in turbid reservoirs. Ecology, 64, 1225–1235.

    Article  Google Scholar 

  • Bachmann, R. W., Hoyer, M. V., & Canfield Jr., D. E. (2013). The extent that natural lakes in the United States of America have been changed by cultural eutrophication. Limnology and Oceanography, 58, 945–950.

    Article  CAS  Google Scholar 

  • Bachmann, R. W., Hoyer, M. V., & Canfield Jr., D. E. (2014). Response to comments: quantification of the extent of cultural eutrophication of natural lakes in the United States. Limnology and Oceanography, 59, 2231–2239.

    Article  Google Scholar 

  • Bigham Stephens, D. L., Carlson, R. E., Horsburgh, C. A., Hoyer, M. V., Bachmann, R. W., & Canfield Jr., D. E. (2015). Regional distribution of Secchi disk transparency in waters of the United States. Lake and Reservoir Management, 31, 55–63.

    Article  Google Scholar 

  • Boyle, K. J., Poor, P. J., & Taylor, L. O. (1999). Estimating the demand for protecting freshwater lakes from eutrophication. American Journal of Agricultural Economics, 81, 1118–1122.

    Article  Google Scholar 

  • ter Braak, C. J., & Juggins, S. (1993). Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269, 485–502.

    Article  Google Scholar 

  • Brothers, S., Vermaire, J. C., & Gregory-Eaves, I. (2008). Empirical models for describing recent sedimentation rates in lakes distributed across broad spatial scales. Journal of Paleolimnology, 40, 1003–1019.

    Google Scholar 

  • Bruhn, L. C., & Soranno, P. A. (2005). Long term (1974–2001) volunteer monitoring of water clarity trends in Michigan lakes and their relation to ecoregion and land use/cover. Lake and Reservoir Management, 21, 10–23.

    Google Scholar 

  • Buiteveld, H. (1995). A model for calculation of diffuse light attenuation (PAR) and Secchi depth. Netherlands Journal of Aquatic Ecology, 29, 55–65.

    Article  CAS  Google Scholar 

  • Canfield Jr., D. E., & Bachmann, R. W. (1981). Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Canadian Journal of Fisheries and Aquatic Sciences, 38, 414–423.

    Article  Google Scholar 

  • Canfield Jr., D. E., & Hodgson, L. M. (1983). Prediction of Secchi disc depths in Florida lakes: impact of algal biomass and organic color. Hydrobiologia, 99, 51–60.

    Article  Google Scholar 

  • Canfield Jr., D. E., Bachmann, R. W., Stephens, D. B., Hoyer, M. V., Bacon, L., Williams, S., & Scott, M. (2016). Monitoring by citizen scientists demonstrates water clarity of Maine (USA) lakes is stable, and not declining, due to cultural eutrophication. Inland Waters, 6, 11–27.

    Article  Google Scholar 

  • Carlson, R. (1977). A trophic state index for lakes. Limnology and Oceanography, 22, 361–369.

    Article  CAS  Google Scholar 

  • Carlson, R. E., & Havens, K. E. (2005). Simple graphical methods for the interpretation of relationships between trophic state variables. Lake and Reservoir Management, 21, 107–118.

    Article  CAS  Google Scholar 

  • R Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.

  • Davies-Colley, R. J., & Smith, R. J. (2001). Turbidity, suspended sediment, and water clarity: a review. Journal of the American Water Resources Association, 37, 1085–1101.

    Article  Google Scholar 

  • Dixit, S. S., & Smol, J. P. (1994). Diatoms as indicators in the environmental monitoring and assessment program-surface waters (EMAP-SW). Environmental Monitoring and Assessment, 31, 275–307.

    CAS  Google Scholar 

  • Dixit, S. S., Smol, J. P., Charles, D. F., Hughes, R. M., Paulsen, S. G., & Collins, G. B. (1999). Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Canadian Journal of Fisheries and Aquatic Sciences, 56, 131–152.

    Article  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. Boca Raton: CRC press.

    Google Scholar 

  • Garrison, P. J., & Wakeman, R. S. (2000). Use of paleolimnology to document the effect of lake shoreland development on water quality. Journal of Paleolimnology, 24, 369–393.

    Article  Google Scholar 

  • Hâkanson, L., & Boulion, V. V. (2003). A model to predict how individual factors influence Secchi depth variations among and within lakes. International Review of Hydrobiology, 88, 212–232.

    Article  Google Scholar 

  • Hall, R. I., & Smol, J. P. (1996). Paleolimnological assessment of long-term water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Canadian Journal of Fisheries and Aquatic Sciences, 53, 1–17.

    Article  CAS  Google Scholar 

  • Heathcote, A. J., Hobbs, J. M. R., Anderson, N. J., Frings, P., Engstrom, D. R., & Downing, J. A. (2015). Diatom floristic change and lake paleoproduction as evidence of recent eutrophication in shallow lakes of the midwestern USA. Journal of Paleolimnology, 53, 17–34.

    Article  Google Scholar 

  • Herlihy, A. T., Kamman, N. C., Sifneos, J. C., Charles, D., Enache, M. D., & Stevenson, R. J. (2013). Using multiple approaches to develop nutrient criteria for lakes in the conterminous USA. Freshwater Science, 32, 367–384.

    Article  Google Scholar 

  • Hoyer, M. V., & Jones, J. R. (1983). Factors affecting the relation between phosphorus and chlorophyll a in midwestern reservoirs. Canadian Journal of Fisheries and Aquatic Sciences, 40, 192–199.

    Article  CAS  Google Scholar 

  • Jones, J. R., & Knowlton, M. F. (2005). Suspended solids in Missouri reservoirs in relation to catchment features and internal processes. Water Research, 39, 3629–3635.

    Article  CAS  Google Scholar 

  • Jones, J. R., Obrecht, D. V., Perkins, B. D., Knowlton, M. F., Thorpe, A. P., Watanabe, S., & Bacon, R. R. (2008). Nutrients, seston, and transparency of Missouri reservoirs and oxbow lakes: an analysis of regional limnology. Lake and Reservoir Management, 24, 155–180.

    Article  Google Scholar 

  • Juggins, S. (2015). rioja: Analysis of Quaternary Science Data, R package version (0.9–5). (http://cran.r-project.org/package=rioja).

  • Juggins, S., & Birks, H. J. B. (2012). Quantitative environmental reconstructions from biological data. In Tracking environmental change using lake sediments (pp. 431–494). Springer Netherlands.

  • Kamman, N. C., & Engstrom, D. R. (2002). Historical and present fluxes of mercury to Vermont and New Hampshire lakes inferred from 210 Pb dated sediment cores. Atmospheric Environment, 36, 1599–1609.

    Article  CAS  Google Scholar 

  • Köster, D., & Pienitz, R. (2006). Seasonal diatom variability and paleolimnological inferences—a case study. Journal of Paleolimnology, 35, 395–416.

    Article  Google Scholar 

  • Lind, O. T. (1986). The effect of non-algal turbidity on the relationship of Secchi depth to chlorophyll a. Hydrobiologia, 140, 27–35.

    Article  CAS  Google Scholar 

  • Lorenzen, M. W. (1980). Use of chlorophyll-Secchi disk relationships. Limnology and Oceanography, 25, 371–372.

    Article  CAS  Google Scholar 

  • Lottig, N. R., Wagner, T., Norton Henry, E., Spence Cheruvelil, K., Webster, K. E., Downing, J. A., & Stow, C. A. (2014). Long-term citizen-collected data reveal geographical patterns and temporal trends in lake water clarity. PloS One, 9, e95769.

    Article  Google Scholar 

  • McCullough, I. M., Loftin, C. S., & Sader, S. A. (2013). Landsat imagery reveals declining clarity in Maine’s lakes during 1995–2010. Freshwater Science, 32, 741–752.

    Article  Google Scholar 

  • McDonald, C. P., Lottig, N. R., Stoddard, J. L., Herlihy, A. T., Lehmann, S., Paulsen, S. G., Peck, D. V., Pollard, A. I., & Stevenson, R. J. (2014). Comment on Bachman et al. (2013): A non-representative sample cannot describe the extent of cultural eutrophication of natural lakes in the United States. Limnology and Oceanography, 59, 2226–2230.

    Article  Google Scholar 

  • Nellis, M. D., Harrington, J. A., & Wu, J. (1998). Remote sensing of temporal and spatial variations in pool size, suspended sediment, turbidity, and Secchi depth in Tuttle Creek Reservoir, Kansas: 1993. Geomorphology, 21, 281–293.

    Article  Google Scholar 

  • Norton, S. A., Bienert, R. W., Binford, M. W., & Kahl, J. S. (1992). Stratigraphy of total metals in PIRLA sediment cores. Journal of Paleolimnology, 7, 191–214.

    Article  Google Scholar 

  • Olmanson, L. G., Brezonik, P. L., & Bauer, M. E. (2013). Geospatial and temporal analysis of a 20-year record of Landsat-based water clarity in Minnesota’s 10,000 lakes. Journal of the American Water Resource Association, 50, 748–761.

    Article  Google Scholar 

  • Omernik, J. M., & Griffith, G. E. (2014). Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management, 54, 1249–1266.

    Article  Google Scholar 

  • Peckham, S. D., & Lillesand, T. M. (2006). Detection of spatial and temporal trends in Wisconsin lake water clarity using Landsat-derived estimates of Secchi depth. Lake and Reservoir Management, 22, 331–341.

    Article  Google Scholar 

  • Peeters, E. T., Franken, R. J., Jeppesen, E., Moss, B., Bécares, E., Hansson, L. A., & Nõges, T. (2009). Assessing ecological quality of shallow lakes: Does knowledge of transparency suffice? Basic and Applied Ecology, 10, 89–96.

    Article  Google Scholar 

  • Perkins, M., Effler, S. W., Strait, C., & Zhang, L. (2009). Light absorbing components in the Finger Lakes of New York. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 173, 305–320.

    Article  CAS  Google Scholar 

  • Rawson, D. S. (1952). Mean depth and fish production in large lakes. Ecology, 33, 513–521.

    Article  Google Scholar 

  • SAS Institute Inc. 2007. JMP Statistics and Graphics Guide. Cary (NC).

  • Schanz, F. (1994). Oligotrophication of Lake Zürich as reflected in Secchi depth measurements. Annales de Limnologie-International Journal of Limnology, 30, 57–65.

    Article  Google Scholar 

  • Simon, A., Dickerson, W., & Heins, A. (2004). Suspended-sediment transport rates at the 1.5-year recurrence interval for ecoregions of the United States: transport conditions at the bankfull and effective discharge? Geomorphology, 58, 243–262.

    Article  Google Scholar 

  • Siver, P. A., Canavan, R. W., Field, C. K., Marsicano, L. J., & Lott, A. M. (1996). Historical changes in Connecticut lakes over a 55-year period. Journal of Environmental Quality, 25, 334–345.

    Article  CAS  Google Scholar 

  • Smith, V. H., Dodds, W. K., Havens, K. E., Engstrom, D. E., Paerl, H. W., Moss, B., & Likens, G. E. (2014). Comment: Cultural eutrophication of natural lakes in the United States is real and widespread. Limnology and Oceanography, 59, 2217–2225.

    Article  Google Scholar 

  • Søballe, D. M., & Kimmel, B. L. (1987). A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology, 68, 1943–1954.

    Article  Google Scholar 

  • Thornton, K. W., Kennedy, R. H., Carroll, J. H., Walker, W. W., Gunkel R. C., & Ashby, S. (1981). Reservoir sedimentation and water quality—an heuristic model. In Proceedings of the symposium on surface water impoundments. American Society of Civil Engineers, New York, NY. 1, 654–661.

  • USEPA. (2010a). National Lakes Assessment: A collaborative survey of the nation’s lakes. U.S. Environmental Protection Agency. Washington, D.C.: U.S. Environmental Protection Agency, Office of Water and Office of Research and Development, EPA 841-R-09-001.

  • USEPA. (2010b). National Lakes Assessment: Technical appendix: Data analysis approach. Washington, D.C.: U.S. Environmental Protection Agency Office of Water, and Office of Research and Development, EPA 841-R-09-001a.

  • Wagner, T., Soranno, P. A., Cheruvelil, K. S., Renwick, W. H., Webster, K. E., Vaux, P., & Abbitt, R. J. (2008). Quantifying sample biases of inland lake sampling programs in relation to lake surface area and land use/cover. Environmental Monitoring and Assessment, 141, 131–147.

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhang, B., Ma, R., Feng, S., & Le, C. (2007). Optically active substances and their contributions to the underwater light climate in Lake Taihu, a large shallow lake in China. Fundamental and Applied Limnology/Archiv für Hydrobiologie, 170, 11–19.

    Article  CAS  Google Scholar 

  • Zhang, Y., Yin, Y., Zhang, E., Zhu, G., Liu, M., Feng, L., et al. (2011). Spectral attenuation of ultraviolet and visible radiation in lakes in the Yunnan plateau, and the middle and lower reaches of the Yangtze River, China. Photochemical & Photobiological Sciences, 10, 469–482.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the United States Environmental Protection Agency, Office of Research and Development for collecting the data we used in this study and for making it available for other researchers to use. We also thank Steve Juggins for making the R package program “rioja” available, so others can use the diatoms of lake sediments to infer past environmental conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger W. Bachmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmann, R.W., Hoyer, M.V., Croteau, A.C. et al. Factors related to Secchi depths and their stability over time as determined from a probability sample of US lakes. Environ Monit Assess 189, 206 (2017). https://doi.org/10.1007/s10661-017-5911-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5911-9

Keywords

Navigation