Skip to main content
Log in

Reliability improvement for predicting acid-forming potential of rock samples using static tests

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In predicting the acid-forming potential of rock samples, a combination of acid–base accounting (ABA) and net acid generation (NAG) tests has been commonly used. While simple and economical, this method sometimes shows low reliability such as categorizing certain samples as uncertain (UC). ABA and NAG tests were modified to selectively recover valid minerals in nature and substituted for the original tests. ABA test overestimated acid-producing capacity (in the case of weathered samples) and acid-neutralizing capacity (in the case of plagioclase-including samples) compared to the modified ABA test. NAG test yielded lower NAG pH compared to modified NAG test for samples with high total C content and low total S content. By comparing the correlation coefficients between acid generation amounts by the two evaluation methods, it was confirmed that modified evaluation method (MEM) has a much higher reliability (R 2 = 0.9582) than existing evaluation method (EEM) (R 2 = 0.5873). It was also concluded that exploiting advantages of both EEM and MEM is recommended where EEM is initially applied for general classification and a supplemented static test of MEM is executed for the purpose of correcting the error of UC categorized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam, K., Kourtis, A., Gazea, B., & Kontopoulos, A. (1997). Evaluation of static tests used to predict the potential for acid drainage generation at sulphide mine sites. Transactions of the Institution of Mining and Metallurgy—Section A-Mining Industry, 106, A1.

    Google Scholar 

  • Ahern, C. R., McElnea, A. E., & Sullivan, L. (2004). Acid sulphate soils: laboratory methods guidelines: Department of Natural Resources, Mines and Energy.

  • Alkattan, M., Oelkers, E. H., Dandurand, J.-L., & Schott, J. (2002). An experimental study of calcite dissolution rates at acidic conditions and 25 °C in the presence of NaPO3 and MgCl2. Chemical Geology, 190(1), 291–302.

  • Allen, D. T., Palen, E. J., Haimov, M. I., Hering, S. V., & Young, J. R. (1994). Fourier transform infrared spectroscopy of aerosol collected in a low pressure impactor (LPI/FTIR): method development and field calibration. Aerosol Science and Technology, 21(4), 325–342.

    Article  CAS  Google Scholar 

  • Azapagic, A. (2004). Developing a framework for sustainable development indicators for the mining and minerals industry. Journal of Cleaner Production, 12(6), 639–662.

    Article  Google Scholar 

  • Bigham, J., & Nordstrom, D. K. (2000). Iron and aluminum hydroxysulfates from acid sulfate waters. Reviews in Mineralogy and Geochemistry, 40(1), 351–403.

    Article  CAS  Google Scholar 

  • Brady, K., Bigham, J., Jaynes, W., & Logan, T. (1986). Influence of sulfate on Fe-oxide formation: comparisons with a stream receiving acid mine drainage. Clays and Clay Minerals, 34(3), 266–274.

    Article  CAS  Google Scholar 

  • Bucknam, C. A. (1997). Net carbonate value (NCV) for acid-base accounting.

  • Carbone, C., Dinelli, E., Marescotti, P., Gasparotto, G., & Lucchetti, G. (2013). The role of AMD secondary minerals in controlling environmental pollution: indications from bulk leaching tests. Journal of Geochemical Exploration, 132, 188–200.

    Article  CAS  Google Scholar 

  • Casey, W. H., Westrich, H. R., & Holdren, G. R. (1991). Dissolution rates of plagioclase at pH = 2 and 3. American Mineralogist; (United States), 76.

  • Chotpantarat, S. (2011). A review of static tests and recent studies. American Journal of Applied Sciences, 8(4), 400.

    Article  CAS  Google Scholar 

  • Frau, F. (2000). The formation-dissolution-precipitation cycle of melanterite at the abandoned pyrite mine of Genna Luas in Sardinia, Italy: environmental implications. Mineralogical Magazine, 64(6), 995–1006.

    Article  CAS  Google Scholar 

  • Ghorbanzadeh, N., Jung, W., Halajnia, A., Lakzian, A., Kabra, A. N., & Jeon, B.-H. (2015). Removal of arsenate and arsenite from aqueous solution by adsorption on clay minerals. Geosystem Engineering, 18(6), 302–311.

    Article  CAS  Google Scholar 

  • Gudbrandsson, S., Wolff-Boenisch, D., Gislason, S. R., & Oelkers, E. H. (2014). Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22 C. Geochimica et Cosmochimica Acta, 139, 154–172.

    Article  CAS  Google Scholar 

  • Han, Y.-S., Youm, S.-J., Oh, C., Cho, Y.-C., & Ahn, J. S. (2017). Geochemical and eco-toxicological characteristics of stream water and its sediments affected by acid mine drainage. CATENA, 148, 52-59.

  • Heidel, C., Tichomirowa, M., & Breitkopf, C. (2011). Sphalerite oxidation pathways detected by oxygen and sulfur isotope studies. Applied Geochemistry, 26(12), 2247–2259.

    Article  CAS  Google Scholar 

  • Hug, S. J. (1997). In situ Fourier transform infrared measurements of sulfate adsorption on hematite in aqueous solutions. Journal of Colloid and Interface Science, 188(2), 415–422.

    Article  CAS  Google Scholar 

  • Jambor, J., Dutrizac, J., Groat, L., & Raudsepp, M. (2002). Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environmental Geology, 43(1–2), 1–17.

    CAS  Google Scholar 

  • Jambor, J., Dutrizac, J., Raudsepp, M., & Groat, L. (2003). Effect of peroxide on neutralization-potential values of siderite and other carbonate minerals. Journal of Environmental Quality, 32(6), 2373–2378.

    Article  CAS  Google Scholar 

  • Ji, S. W., Cheong, Y. W., Yim, G. J., & Bhattacharya, J. (2007). ARD generation and corrosion potential of exposed roadside rockmass at Boeun and Mujoo, South Korea. Environmental Geology, 52(6), 1033–1043.

    Article  CAS  Google Scholar 

  • Ji, S., Kim, S., & Ko, J. (2008). The status of the passive treatment systems for acid mine drainage in South Korea. Environmental Geology, 55(6), 1181–1194.

    Article  CAS  Google Scholar 

  • Johnson, D. B., & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of the Total Environment, 338(1), 3–14.

    Article  CAS  Google Scholar 

  • Lapakko, K. (2002). Metal mine rock and waste characterization tools: an overview. Mining, Minerals and Sustainable Development, 67, 1–30.

    Google Scholar 

  • Lawrence, R. W., & Scheske, M. (1997). A method to calculate the neutralization potential of mining wastes. Environmental Geology, 32(2), 100–106.

    Article  CAS  Google Scholar 

  • Li, J., Smart, R. S. C., Schumann, R. C., Gerson, A. R., & Levay, G. (2007). A simplified method for estimation of jarosite and acid-forming sulfates in acid mine wastes. Science of the Total Environment, 373(1), 391–403.

    Article  CAS  Google Scholar 

  • Luttge, A., & Arvidson, R. S. (2006). Sulfide dissolution rates studied by vertical scanning interferometry: comparison with and application to studies in laboratory and natural setting (final technical report). In USGS (Ed.).

  • Miller, S., & Jeffery, J. (1995). Advances in the prediction of acid generating mine waste materials. In N. J. Grundon & L. C. Bell (Eds.), Proceedings of the Second Australian Acid Mine Drainage Workshop (Charters Towers, Queensland, 28-31 March 1995) (pp. 33–43). Brisbane: Australian Centre for Minesite Rehabilitation Research.

    Google Scholar 

  • Miura, K., Mae, K., Okutsu, H., & Mizutani, N.-A. (1996). New oxidative degradation method for producing fatty acids in high yields and high selectivity from low-rank coals. Energy & Fuels, 10(6), 1196–1201.

    Article  CAS  Google Scholar 

  • Oh, C., Rhee, S., Oh, M., & Park, J. (2012). Removal characteristics of As(III) and As(V) from acidic aqueous solution by steel making slag. Journal of Hazardous Materials, 213, 147–155.

    Article  Google Scholar 

  • Oh, C., Ji, S., Yim, G., & Cheong, Y. (2014). Applicability comparison of methods for acid generation assessment of rock samples. In EGU General Assembly Conference Abstracts, (Vol. 16, pp. 4862).

  • Oh, C., Yu, C., Cheong, Y., Yim, G., Song, H., Hong, J.-H., et al. (2015). Efficiency assessment of cascade aerator in a passive treatment system for Fe(II) oxidation in ferruginous mine drainage of net alkaline. Environmental Earth Sciences, 73(9), 5363–5373.

    Article  CAS  Google Scholar 

  • Oh, C., Ji, S., Yim, G., & Cheong, Y. (2017). Evaluation of net acid generation pH as a single indicator for acid forming potential of rocks using geochemical properties. Environmental Monitoring and Assessment, 189(4), 165. doi:10.1007/s10661-017-5869-7.

  • Park, J. H., Oh, C., Han, Y.-S., & Ji, S.-W. (2015). Optimizing the addition of flocculants for recycling mineral-processing wastewater. Geosystem Engineering, 1–6.

  • Sasaki, K., & Konno, H. (2000). Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions. The Canadian Mineralogist, 38(1), 45–56.

    Article  CAS  Google Scholar 

  • Sasaki, K., Tanaike, O., & Konno, H. (1998). Distinction of jarosite-group compounds by Raman spectroscopy. The Canadian Mineralogist, 36, 1225–1235.

    CAS  Google Scholar 

  • Schumann, R., Stewart, W., Miller, S., Kawashima, N., Li, J., & Smart, R. (2012). Acid–base accounting assessment of mine wastes using the chromium reducible sulfur method. Science of the Total Environment, 424, 289–296.

    Article  CAS  Google Scholar 

  • Sherlock, E., Lawrence, R., & Poulin, R. (1995). On the neutralization of acid rock drainage by carbonate and silicate minerals. Environmental Geology, 25(1), 43–54.

    Article  CAS  Google Scholar 

  • Skousen, J., Renton, J., Brown, H., Evans, P., Leavitt, B., Brady, K., et al. (1997). Neutralization potential of overburden samples containing siderite. Journal of Environmental Quality, 26(3), 673–681.

    Article  CAS  Google Scholar 

  • Sobek, A. A., & Geological, W. V. (1978). Field and laboratory methods applicable to overburdens and minesoils: Industrial Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.

  • Stewart, W. (2005). Development of acid rock drainage prediction methodologies for coal mine wastes. Australia: University of South Australia.

  • Stewart, W. A. (2009). Development of prediction methods for ARD assessment of coal process wastes. In, 2009: ICARD

  • USEPA (1994). Acid mine drainage prediction. EPA530-R-94-036: U.S. Environmental Protection Agency.

  • Vranova, V., Rejsek, K., & Formanek, P. (2013). Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review. The Scientific World Journal, 2013.

  • Weber, P. A., Stewart, W. A., Skinner, W. M., Weisener, C., Thomas, J. E., & Smart, R. S. C. (2004). Geochemical effects of oxidation products and framboidal pyrite oxidation in acid mine drainage prediction techniques. Applied Geochemistry, 19(12), 1953–1974.

    Article  CAS  Google Scholar 

  • Weber, P. A., Thomas, J. E., Skinner, W. M., & Smart, R. S. C. (2005). A methodology to determine the acid-neutralization capacity of rock samples. The Canadian Mineralogist, 43(4), 1183–1192.

    Article  CAS  Google Scholar 

  • Weber, P. A., Hughes, J. B., Conner, L. B., Lindsay, P., & Smart, R. (2006). Short-term acid rock drainage characteristics determined by paste pH and kinetic NAG testing: Cypress, prospect. New Zealand: ASMR.

    Google Scholar 

  • Yu, J., & Savage, P. E. (1998). Decomposition of formic acid under hydrothermal conditions. Industrial & Engineering Chemistry Research, 37(1), 2–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangwoo Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, C., Ji, S., Chon, CM. et al. Reliability improvement for predicting acid-forming potential of rock samples using static tests. Environ Monit Assess 189, 207 (2017). https://doi.org/10.1007/s10661-017-5906-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5906-6

Keywords

Navigation