Skip to main content

Advertisement

Log in

Unconventional natural gas development did not result in detectable changes in water chemistry (within the South Fork Little Red River)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The Fayetteville Shale within north central Arkansas is an area of extensive unconventional natural gas (UNG) production. Recently, the Scott Henderson Gulf Mountain Wildlife Management Area (GMWMA) was leased from the state of Arkansas for NG exploration, raising concerns about potential impacts on water resources. From November 2010 through November 2014, we monitored four reaches of the South Fork Little Red River (SFLRR), within the GMWMA, establishing baseline physico-chemical characteristics prior to UNG development and assessing trends in parameters during and after UNG development. Water samples were collected monthly during baseflow conditions and analyzed for conductivity, turbidity, ions, total organic carbon (TOC), and metals. All parameters were flow-adjusted and evaluated for monotonic changes over time. The concentrations of all constituents measured in the SFLRR were generally low (e.g., nitrate ranged from <0.005 to 0.268 mg/l across all sites and sample periods), suggesting the SFLRR is of high water quality. Flow-adjusted conductivity measurements and sodium concentrations increased at site 1, while magnesium decreased across all four sites, TOC decreased at sites 1 and 3, and iron decreased at site 1 over the duration of the study. With the exception of conductivity and sodium, the physico-chemical parameters either decreased or did not change over the 4-year duration, indicating that UNG activities within the GMWMA have had minimal or no detectable impact on water quality within the SFLRR. Our study provides essential baseline information that can be used to evaluate water quality within the SFLRR in the future should UNG activity within the GMWMA expand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allan, J. D., & Castillo, M. M. (2007). Stream Ecology: structure and function on running waters. Dordrecht: Springer.

    Book  Google Scholar 

  • Allen, D. T., Torres, V. M., Thomas, J., Sullivan, D. W., Harrison, M., Hendler, A., Herndon, S. C., Kolb, C. E., Fraser, M. P., Hill, A. D., Lamb, B. K., Miskimins, J., Sawyer, R. F., & Seinfeld, J. H. (2013). Measurements of methane emissions at natural gas production sites in the United States. Proceedings of the National Academy of Science, 110, 17768–17773.

    Article  CAS  Google Scholar 

  • Alvarez, R. A., Pacala, S. W., Winebrake, J. J., Chameides, W. L., & Hamburg, S. P. (2012). Greater focus needed on methane leakage from natural gas infrastructure. Proceedings of the National Academy of Science, 109, 6435–6440.

    Article  CAS  Google Scholar 

  • Arkansas Pollution Control and Ecology Commission. (2014). Regulation No. 2: regulation establishing water quality standards for surface waters of the state of Arkansas. http://www.sos.arkansas.gov/rulesRegs/Arkansas%20Register/2011/Oct11Reg/014.00.10-005.pdf. Accessed 10 Mar 2017.

  • Austin, B. J., Hardgrave, N., Inlander, E., Gallipeau, C., Entrekin, S., & Evans-White, M. A. (2015a). Stream primary producers relate positively to watershed natural gas measures in north-central Arkansas. Science of the Total Environment, 529, 54–64.

    Article  CAS  Google Scholar 

  • Austin, B. J., Scott, E. E., Entrekin, S., Evans-White, M. A., & Haggard, B. E. (2015b). Monitoring water resources of the gulf mountain wildlife management area to evaluate possible effects of natural gas development. Fayetteville: Arkansas Water Resources Center MSC Publication 375, 39 pp. http://arkansas-water-center.uark.edu/publications/msc/MSC375_GulfMountain.pdf Accessed 10 Mar 2017.

    Google Scholar 

  • Birdsong, B. (2011). Wildlife management area details. http://www.agfc.com/hunting/Pages/wmaDetails. Accessed 12 Feb 2012.

  • Bowen, Z. H., Oelsner, G. P., Cade, B. S., Gallegos, T. J., Farag, A. M., Mott, D. N., Potter, C. J., Cinotto, P. J., Clark, M. L., Kappel, W. M., Kresse, T. M., Melcher, C. P., Paschke, S. S., Susong, D. D., & Varela, B. A. (2015). Assessment of surface water chloride and conductivity trends in areas of unconventional oil and gas development—why existing national data sets cannot tell us what we would like to know. Water Resources Research, 51, 704–715. doi:10.1002/2014WR016382.

    Article  Google Scholar 

  • Carter, J. L., Resh, V. H., Hannaford, M. J., & Myers, M. J. (2007). Macroinvertebrates as biotic indicators of environmental quality. In F. R. Hauer & G. A. Lamberti (Eds.), Methods in stream Ecology (pp. 805–834). London: Elsevier.

    Chapter  Google Scholar 

  • Caulton, D. R., Shepson, P. B., Santoro, R. L., Sparks, J. P., Howarth, R. W., Ingraffea, A. R., Cambaliza, M. O. L., Sweeney, C., Karion, A., Davis, K. J., Stirm, B. H., Montzka, S. A., & Miller, B. R. (2014). Toward a better understanding and quantification of methane emissions from shale gas development. Proceedings of the National Academy of Sciences., 111(17), 6237–6242.

    Article  CAS  Google Scholar 

  • Dodds, W. K., Jones, J. R., & Welch, E. B. (1998). Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research, 32, 1455–1462.

    Article  CAS  Google Scholar 

  • EIA (Energy Information Administration). (2013). Annual energy outlook 2013: with projections to 2040. Washington, D.C: U.S. Department of Energy.

    Google Scholar 

  • Entrekin, S., Evans-White, M., Johnson, B., & Hagenbuch, E. (2011). Rapid expansion of natural gas development poses a threat to surface waters. Frontiers in Ecology and the Environment, 9, 503–511.

    Article  Google Scholar 

  • Entrekin, S. A., Maloney, K. O., Kapo, K. E., Walters, A. W., Evans-White, M. A., & Klemow, K. M. (2015). Stream vulnerability to widespread and emergent stressors: a focus on unconventional oil and gas. PloS One. doi:10.1371/journal.pone.0137416.

    Google Scholar 

  • Evans-White, M. A., Haggard, B. E., & Scott, J. T. (2013). A review of stream nutrient criteria development in the United States. Journal of Environmental Quality. doi:10.2134/jeq2012.0491.

    Google Scholar 

  • Fontenot, B. E., Hunt, L. R., Hildebrand, Z. L., Carlton Jr., D. D., Oka, H., Walton, J. L., Hopkins, D., Osorio, A., Bjorndal, B., Hu, Q. H., & Schug, K. A. (2013). An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett shale formation. Environmental Science and Technology. doi:10.1021/es4011724.

    Google Scholar 

  • Frierson, L. S. (1927). A classified and annotated check list of the north American naiades. Waco: Baylor University Press.

    Google Scholar 

  • Haluszczak, L. O., Rose, A. W., & Kump, L. R. (2012). Geochemical evaluation of flowback brine from Marcellus gas wells in Pennsylvania, USA. Applied Geochemistry. doi:10.1016/j.apgeochem.2012.10.002.

    Google Scholar 

  • Hildenbrand, Z. L., Carlton Jr., D. D., Fontenot, B. F., Meik, J. M., Walton, J. L., Thacker, J. B., Korlie, S., Shelor, C. P., Kadjo, A. F., Clark, A., Usenko, S., Hamilton, J. S., Mach, P. M., Verbeck IV, G. F., Hudak, P., & Schug, K. A. (2016). Temporal variation in groundwater quality in the Permian basin of Texas, a region of increasing unconventional oil and gas development. Science of the Total Environment., 562, 906–913.

    Article  CAS  Google Scholar 

  • Johnson, E., Austin, B. J., Inlander, E., Gallipeau, C., Evans-White, M. A., & Entrekin, S. (2015). Stream macroinvertebrate communities across a gradient of natural gas development in the Fayetteville shale. Science of the Total Environment. doi:10.1016/j.scitotenv.2015.05.027.

    Google Scholar 

  • Kintisch, E. (2014). A bold baby step on emissions. Science, 344, 1070–1071.

    Article  CAS  Google Scholar 

  • Magoulick, D. D., & Lynch, D. T. (2015). Occupancy and abundance modeling of the endangered Yellowcheek darter in Arkansas. Copeia, 103, 433–439.

    Article  Google Scholar 

  • Malakoff, D. (2014). The gas surge. Science, 344, 1464–1467.

    Article  CAS  Google Scholar 

  • Meybeck, M., & Helmer, R. (1989). The quality of rivers: from pristine stage to global pollution. Global and Planetary Change, 1, 283–309.

    Article  Google Scholar 

  • Miller, S. M., Wofsy, S. C., Michalak, A. M., Kort, E. A., Andrews, A. E., Biraud, S. C., Dlugokencky, E. J., Eluszkiewicz, J., Fischer, M. L., Janssens-Maenhout, G., Miller, B. R., Miller, J. B., Montzka, S. A., Nehrkorn, T., & Sweeney, C. (2013). Anthropogenic emissions of methane in the United States. Proceedings of the National Academy of Science, 110, 20018–20022.

    Article  CAS  Google Scholar 

  • Moran, M. D., Cox, A. B., Wells, R. L., Benichou, C. C., & McClung, M. R. (2015). Habitat loss and modification due to gas development in the Fayetteville shale. Environmental Management. doi:10.1007/s00267-014-0440-6.

    Google Scholar 

  • Nicot, J. P., & Scanlon, B. R. (2012). Water use for shale-gas production in Texas, U.S. Environmental Science and Technology., 46, 3580–3586.

    Article  CAS  Google Scholar 

  • Olmstead, S. M., Muehlenbachs, L. A., Shih, J. S., Chu, Z., & Krupnick, A. J. (2013). Shale gas development impacts on surface water quality in Pennsylvania. Proceedings of the National Academy of Science, 110, 4962–4967.

    Article  CAS  Google Scholar 

  • Orem, W., Tatu, C., Varonka, M., Lerch, H., Bates, A., Engle, M., Crosby, L., & McIntosh, J. (2014). Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale. International Journal of Coal Geology., 126, 20–31.

    Article  CAS  Google Scholar 

  • Osborn, S. G., Vengosh, A., Warner, N. R., & Jackson, R. B. (2011). Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proceedings of the National Academy of Science., 108, 8172–8176.

    Article  CAS  Google Scholar 

  • Payne Jr., B. F., Ackley, R., Wicker, A. P., Hildenbrand, Z. L., Carlton Jr., D. D., & Schug, K. A. (2016). Characterization of methane plumes downwind of natural gas compressor stations in Pennsylvania and New York. Science of the Total Environment. doi:10.1016/j.scitotenv.2016.12.082.

    Google Scholar 

  • Petersen, J.C., Justus, B.G., & Meredith, B.J. (2014). Effects of land use, stream habitat, and water quality on biological communities in wadeable streams in the Illinois River Basin of Arkansas, 2011 and 2012. U.S. Geological Survey Scientific Investigations Report 2014–5009. doi:10.3133/sir20145009. Accessed 28 Mar 2016.

  • Prud’Homme, B. A., & Greis, J. G. (2002). Best management practices in the south. In D. N. Wear & J. G. Greis (Eds.), Southern Forest Resource Assessment (pp. 519–535). Asheville: U.S. Department of Agriculture, Forest Service, Southern Research Station.

    Google Scholar 

  • Rahm, B. G., & Riha, S. J. (2014). Evolving shale gas management: water resource risks, impacts, and lessons learned. Environmental Science: Processes Impacts, 16, 1400–1412.

    CAS  Google Scholar 

  • Raney, E. C., & Suttkus, R. D. (1964). Etheostoma moorei, a new darter of the subgenus Nothonotus from the White River system. Copeia, 1964, 130–138.

    Article  Google Scholar 

  • Richards, R. P., & Baker, D. B. (2002). Trends in water quality in LEASEQ rivers and streams (northwestern Ohio), 1975-1995. Journal of Environmental Quality, 31(1), 90–96.

    Article  CAS  Google Scholar 

  • Rozell, D. J., & Reaven, S. J. (2011). Water pollution risk associated with natural gas extraction from the Marcellus shale. Society for Risk Analysis. doi:10.1111/j.1539-6924.2011.01757.x.

    Google Scholar 

  • Scanlon, B. R., Reedy, R. C., Male, F., & Hove, M. (2016). Managing the increasing water footprint of hydraulic fracturing in the Bakken play. United States. Environmental Science and Technology., 50, 10273–10281.

    Article  CAS  Google Scholar 

  • Shahidehpour, M., Fu, Y., & Wiedman, T. (2005). Impact of natural gas infrastructure on electric power systems. Proceedings of the IEEE, 93, 1042–1056.

    Article  Google Scholar 

  • U. S. Fish and Wildlife Service. (2009). Arkansas best management practices for natural gas pipeline construction and maintenance activities in the Fayetteville shale area, upper Little Red River watershed. Conway: U. S. Fish and Wildlife Service, Arkansas Ecological Services Field Office 42pp. + appendices.

    Google Scholar 

  • U.S. Fish and Wildlife Service. (2007). Best management practices for Fayetteville shale natural gas activities (p. 30). Conway: U.S. Fish and Wildlife Service.

    Google Scholar 

  • U.S. Geological Survey. (2010). Assessment of undiscovered natural gas resources of the Arkoma basin province and geologically related areas. U.S. Department of the Interior and U.S. Geological Survey. http://pubs.usgs.gov/fs/2010/3043/pdf/FS10-3043.pdf. Accessed 28 Mar 2016.

  • Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science and Technology, 48(15), 8334–8348.

    Article  CAS  Google Scholar 

  • Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 340, 826–835. doi:10.1126/science.1235009.

  • Warner, N. R., Kresse, T. M., Hays, P. D., Down, A., Karr, J. D., Jackson, R. B., & Vengosh, A. (2013). Geochemical and isotopic variations in shallow groundwater areas of the Fayetteville shale development, north-central Arkansas. Applied Geochemistry, 35, 207–220.

    Article  CAS  Google Scholar 

  • White, K. L., Haggard, B. E., & Chaubey, I. (2004). Water quality at the buffalo National River, Arkansas, 1991-2001. Transactions of the ASAE, 47(2), 407–417.

    Article  CAS  Google Scholar 

  • Williams, H. F. L., Havens, D. L., Banks, K. E., & Wachal, D. J. (2008). Field-based monitoring of sediment runoff from natural gas well sites in Denton County, Texas, US9A. Environmental Geology, 55, 1463–1471.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Morgan Welch, Jason Corral, and Zachary Simpson in assisting in the collection of water samples and Keith Trost and Jennifer Purtle at the Arkansas Water Resources Center for analyzing the water sample collected. This project and the preparation of this publication were funded in part by a grant from the Arkansas Game and Fish Commission (RG12153) and by the U.S. Fish and Wildlife service through the State Wildlife Grants program (T37-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley J. Austin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Austin, B.J., Scott, E., Massey, L. et al. Unconventional natural gas development did not result in detectable changes in water chemistry (within the South Fork Little Red River). Environ Monit Assess 189, 209 (2017). https://doi.org/10.1007/s10661-017-5904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5904-8

Keywords

Navigation