Skip to main content

Advertisement

Log in

Assessing spatio-temporal trend of vector breeding and dengue fever incidence in association with meteorological conditions

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Th aim of this study is to investigate spatio-temporal trends of dengue vector breeding and epidemic (disease incidence) influenced by climatic factors. The spatio-temporal (low-, medium-, and high-intensity periods) evaluation of entomological and epidemiological investigations along with climatic factors like rainfall (RF), temperature (Tmax), relative humidity (RH), and larval indexing was conducted to develop correlations in the area of Lahore, Pakistan. The vector abundance and disease transmission trend was geo-tagged for spatial insight. The sufficient rainfall events and optimum temperature and relative humidity supported dengue vector breeding with high larval indices for water-related containers (27–37%). Among temporal analysis, the high-intensity period exponentially projected disease incidence followed by post-rainfall impacts. The high larval incidence that was observed in early high-intensity periods effected the dengue incidence. The disease incidence had a strong association with RF (r = 0.940, α = 0.01). The vector larva occurrence (r = 0.017, α = 0.05) influenced the disease incidence. Similarly, RH (r = 0.674, α = 0.05) and average Tmax (r = 0.307, α = 0.05) also induced impact on the disease incidence. In this study, the vulnerability to dengue fever highly correlates with meteorological factors during high-intensity period. It provides area-specific understanding of vector behavior, key containers, and seasonal patterns of dengue vector breeding and disease transmission which is essential for preparing an effective prevention plan against the vector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arunachalam, N., Tana, S., Espino, F., Kittayapong, P., Abeyewickrem, W., Wai, K. T., Tyagi, B. K., Kroeger, A., Sommerfeld, J., & Petzold, M. (2010). Eco-bio-social determinants of dengue vector breeding: a multicountry study in urban and periurban Asia. Bulletin of the World Health Organization, 88(3), 173–184.

    Article  Google Scholar 

  • Bandyopadhyay, S., & Skoufias, E. (2015). Rainfall variability, occupational choice, and welfare in rural Bangladesh. Review of Economics of the Household, 13(3), 589–634.

    Article  Google Scholar 

  • Banu, S., Hu, W., Guo, Y., Hurst, C., & Tong, S. (2014). Projecting the impact of climate change on dengue transmission in Dhaka, Bangladesh. Environment International, 63, 137–142.

    Article  Google Scholar 

  • Bennett, S. N., Drummond, A. J., Kapan, D. D., Suchard, M. A., Munoz-Jordan, J. L., Pybus, O. G., Holmes, E. C., & Gubler, D. J. (2010). Epidemic dynamics revealed in dengue evolution. Molecular Biology and Evolution, 27(4), 811–818.

    Article  CAS  Google Scholar 

  • Bouzid, M., Brainard, J., Hooper, L., & Hunter, P. R. (2016). Public health interventions for Aedes control in the time of Zikavirus—a meta-review on effectiveness of vector control strategies. PLoS Neglected Tropical Diseases, 10(12), e0005176.

    Article  Google Scholar 

  • Chen, S. C., Liao, C. M., Chio, C. P., Chou, H. H., You, S. H., & Cheng, Y. H. (2010). Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: insights from a statistical analysis. Science of the Total Environment, 408(19), 4069–4075.

    Article  CAS  Google Scholar 

  • Cheong, Y. L., Burkart, K., Leitão, P. J., & Lakes, T. (2013). Assessing weather effects on dengue disease in Malaysia. International Journal of Environmental Research and Public Health, 10(12), 6319–6334.

    Article  Google Scholar 

  • Cheong, Y. L., Leitão, P. J., & Lakes, T. (2014). Assessment of land use factors associated with dengue cases in Malaysia using boosted regression trees. Spatial and spatio-temporal epidemiology, 10, 75–84.

    Article  Google Scholar 

  • Dhimal, M., Gautam, I., Joshi, H. D., O’Hara, R. B., Ahrens, B., & Kuch, U. (2015). Risk factors for the presence of chikungunya and dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in central Nepal. PLoS Neglected Tropical Diseases, 9(3), e0003545.

    Article  Google Scholar 

  • Dieng, H., Hassan, A. A., Satho, T., Miake, F., Salmah, M. R. C., & AbuBakar, S. (2011). Insecticide susceptibility of the dengue vector Aedes aegypti (Diptera: Culicidae) in Makkah City, Saudi Arabia. Asian Pacific Journal of Tropical Disease, 1(2), 94–99.

    Google Scholar 

  • Dom, N. C., Ahmad, A. H., Ishak, A. R., & Ismail, R. (2013). Assessing the risk of dengue fever based on the epidemiological, environmental and entomological variables. Procedia-Social and Behavioral Sciences, 105, 183–194.

    Article  Google Scholar 

  • Estallo, E. L., Carbajo, A. E., Grech, M. G., Frías-Céspedes, M., López, L., Lanfri, M. A., Ludueña-Almeida, F. F., & Almirón, W. R. (2014). Spatio-temporal dynamics of dengue 2009 outbreak in Córdoba City, Argentina. Acta Tropica, 136, 129–136.

    Article  CAS  Google Scholar 

  • Gama, Z. P., & Nakagoshi, N. (2013). Climatic variability and dengue haemaorrhagic fever incidence in Nganjuk district, East Java, Indonesia. Acta Biologica Malaysiana, 2(1), 31–39.

    Google Scholar 

  • Giriyanna, G., Sridevi, K., Madhusudan, M., & Ravi, K. (2015). Awareness regarding dengue fever among the link workers of urban health centres of Bengaluru City-South India. Asian Pacific Journal of Tropical Disease, 5, S42–S44.

    Article  Google Scholar 

  • Gubler, D. J. (2011). Dengue, Urbanization and Globalization: The Unholy Trinity of the 21 (st) Century. Tropical Medicine and Health, 39, 3–11. doi:10.2149/tmh.2011-S05.

  • Harinder, S., & Sukhmeet, M. (2014). A study of larval indices of Aedes and the risk for dengue outbreak. Sch. Acad. J. Biosci., 2(8), 544–547.

    Google Scholar 

  • Honório, N. A., Codeço, C. T., Alves, F. C., Magalhães, M. A. F. M., & Lourenço-de-Oliveira, R. (2009). Temporal distribution of Aedes aegypti in different districts of Rio de Janeiro, Brazil, measured by two types of traps. Journal of Medical Entomology, 46(5), 1001–1014.

    Article  Google Scholar 

  • Mohiddin, A., Jaal, Z., Lasim, A. M., Dieng, H., & Zuharah, W. F. (2015). Assessing dengue outbreak areas using vector surveillance in north east district, Penang Island, Malaysia. Asian Pacific Journal of Tropical Disease, 5(11), 869–876.

    Article  Google Scholar 

  • Mohiddin, A., Lasim, A. M., & Zuharah, W. F. (2016). Susceptibility of Aedes albopictus from dengue outbreak areas to temephos and Bacillus thuringiensis subsp. israelensis. Asian Pacific Journal of Tropical Biomedicine, 6(4), 295–300.

  • Naqvi, S. A. A., Kazmi, S. J. H., Shaikh, S., & Akram, M. (2015). Evaluation of prevalence patterns of dengue fever in Lahore District through geo-spatial techniques. Journal of Basic & Applied Sciences, 11, 20.

    Article  Google Scholar 

  • Padmanabha, H., Correa, F., Legros, M., Nijhout, H. F., Lord, C., & Lounibos, L. P. (2012). An eco-physiological model of the impact of temperature on Aedes aegypti life history traits. Journal of Insect Physiology, 58(12), 1597–1608.

    Article  CAS  Google Scholar 

  • Ramasamy, R., Surendran, S. N., Jude, P. J., Dharshini, S., & Vinobaba, M. (2011). Larval development of Aedes aegypti and Aedes albopictus in peri-urban brackish water and its implications for transmission of arboviral diseases. PLoS Neglected Tropical Diseases, 5(11), e1369.

    Article  Google Scholar 

  • Rodriguez-Roche, R., & Gould, E. A. (2013). Understanding the dengue viruses and progress towards their control. BioMed Research International. doi:10.1155/2013/690835.

  • Sarfraz, M. S., Tripathi, N. K., Tipdecho, T., Thongbu, T., Kerdthong, P., & Souris, M. (2012). Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health, 12(1), 853.

    Article  Google Scholar 

  • Sutherst, R. W. (2004). Global change and human vulnerability to vector-borne diseases. Clinical Microbiology Reviews, 17(1), 136–173.

    Article  Google Scholar 

  • Tran, A., L’Ambert, G., Lacour, G., Benoît, R., Demarchi, M., Cros, M., Cailly, P., Aubry-Kientz, M., Balenghien, T., & Ezanno, P. (2013). A rainfall-and temperature-driven abundance model for Aedes albopictus populations. International Journal of Environmental Research and Public Health, 10(5), 1698–1719.

    Article  Google Scholar 

  • Tsai, C. T., Sung, F. C., Chen, P. S., & Lin, S. C. (2012). Exploring the spatial and temporal relationships between mosquito population dynamics and dengue outbreaks based on climatic factors. Stochastic Environmental Research and Risk Assessment, 26(5), 671–680.

    Article  Google Scholar 

  • Urdaneta-Marquez, L., & Failloux, A. B. (2011). Population genetic structure of Aedes aegypti, the principal vector of dengue viruses. Infection, Genetics and Evolution, 11(2), 253–261.

    Article  Google Scholar 

  • Wongkoon, S., Jaroensutasinee, M., & Jaroensutasinee, K. (2013). Distribution, seasonal variation & dengue transmission prediction in Sisaket, Thailand. The Indian Journal of Medical Research, 138(3), 347.

    CAS  Google Scholar 

  • Wu, P. C., Guo, H. R., Lung, S. C., Lin, C. Y., & Su, H. J. (2007). Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Tropica, 103(1), 50–57.

    Article  Google Scholar 

  • Wu, P. C., Lay, J. G., Guo, H. R., Lin, C. Y., Lung, S. C., & Su, H. J. (2009). Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Science of the Total Environment, 407(7), 2224–2233.

    Article  CAS  Google Scholar 

  • Wu, X., Lu, Y., Zhou, S., Chen, L., & Xu, B. (2016). Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environment International, 86, 14–23.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the team of Dengue Vector Control and Prevention Unit Data Gunj Bukhsh Town Lahore for all of field assistance during this project. We also thank the Director Punjab Information Technology Board for providing the meteorological health data entries.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afifa Malik.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Human and animal rights and informed consent

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A., Yasar, A., Tabinda, A.B. et al. Assessing spatio-temporal trend of vector breeding and dengue fever incidence in association with meteorological conditions. Environ Monit Assess 189, 189 (2017). https://doi.org/10.1007/s10661-017-5902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5902-x

Keywords

Navigation