Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India

Abstract

Tropical dry forests are one of the most widely distributed ecosystems in tropics, which remain neglected in research, especially in the Eastern Ghats. Therefore, the present study was aimed to quantify the carbon storage in woody vegetation (trees and lianas) on large scale (30, 1 ha plots) in the dry deciduous forest of Sathanur reserve forest of Eastern Ghats. Biomass of adult (≥10 cm DBH) trees was estimated by species-specific allometric equations using diameter and wood density of species whereas in juvenile tree population and lianas, their respective general allometric equations were used to estimate the biomass. The fractional value 0.4453 was used to convert dry biomass into carbon in woody vegetation of tropical dry forest. The mean aboveground biomass value of juvenile tree population was 1.86 Mg/ha. The aboveground biomass of adult trees ranged from 64.81 to 624.96 Mg/ha with a mean of 245.90 Mg/ha. The mean aboveground biomass value of lianas was 7.98 Mg/ha. The total biomass of woody vegetation (adult trees + juvenile population of trees + lianas) ranged from 85.02 to 723.46 Mg/ha, with a mean value of 295.04 Mg/ha. Total carbon accumulated in woody vegetation in tropical dry deciduous forest ranged from 37.86 to 322.16 Mg/ha with a mean value of 131.38 Mg/ha. Adult trees accumulated 94.81% of woody biomass carbon followed by lianas (3.99%) and juvenile population of trees (1.20%). Albizia amara has the greatest biomass and carbon stock (58.31%) among trees except for two plots (24 and 25) where Chloroxylon swietenia contributed more to biomass and carbon stock. Similarly, Albizia amara (52.4%) showed greater carbon storage in juvenile population of trees followed by Chloroxylon swietenia (21.9%). Pterolobium hexapetalum (38.86%) showed a greater accumulation of carbon in liana species followed by Combretum albidum (33.04%). Even though, all the study plots are located within 10 km radius, they show a significant spatial variation among them in terms of biomass and carbon stocks which could be attributed to variation in anthropogenic pressures among the plots as well as to changes in tree density across landscapes. Total basal area of woody vegetation showed a significant positive (R 2 = 0.978; P = 0.000) relationship with carbon storage while juvenile tree basal area showed the negative relationship (R 2 = 0.4804; P = 0.000) with woody carbon storage. The present study generates a large-scale baseline data of dry deciduous forest carbon stock, which would facilitate carbon stock assessment at a national level as well as to understand its contribution on a global scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Becknell, J. M., & Powers, J. S. (2014). Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Canadian Journal of Forest Research, 44(6), 604–613.

    CAS  Article  Google Scholar 

  2. Becknell, J. M., Kucek, L. K., & Powers, J. S. (2012). Aboveground biomass in mature and secondary seasonally dry tropical forests: a literature review and global synthesis. Forest Ecology and Management, 276, 88–95.

    Article  Google Scholar 

  3. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, A. M., Baldocchi, D., Bonan, G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., & Papale, D. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329, 834–838.

    CAS  Article  Google Scholar 

  4. Berenguer, E., Ferreira, J., Gardner, T. A., Aragao, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., Oliveira, R. C. D., Vieira, I. C. G., & Barlow, J. (2014). A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20(12), 3713–3726.

    Article  Google Scholar 

  5. Bhat, D. M., & Ravindranath, N. H. (2011). Above-ground standing biomass and carbon stock dynamics under a varied degree of anthropogenic pressure in tropical rain forest of Uttar Kannada District, Western Ghats, India. Taiwania, 56(2), 85–96.

    Google Scholar 

  6. Bijalwan, A., Swamy, S. L., Sharma, C. M., Sharma, N. K., & Tiwari, A. K. (2010). Land-use, biomass and carbon estimation in dry tropical forest of Chhattisgarh region in India using remote sensing and GIS. Journal of Forest Research, 21(2), 161–170.

    Article  Google Scholar 

  7. Borah, M., Das, D., Kalita, J., Boruah, H. P. D., Phukan, B., & Neog, B. (2015). Tree species composition, biomass and carbon stocks in two tropical forest of Assam. Biomass and Bioenergy, 78, 25–35.

    Article  Google Scholar 

  8. Brienen, R. J. W., Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez Martinez, R., Alexiades, M., Álvarez Dávila, E. A., Alvarez-Loayza, P., Andrade, A., Aragao, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., Aymard, C. G. A., Banki, O. S., Baraloto, C., Barroso, J., Bonal, D., Boot, R. G. A., Camargo, J. L. C., Castilho, C. V., Chama, V., Chao, K. J., Chave, J., Comiskey, J. A., Cornejo Valverde, F., Costa, L. D., Oliveira, E. A. D., Di Fiore, A., Erwin, T. L., Fauset, S., Forsthofer, M., Galbraith, D. R., Grahame, E. S., Groot, N., Hérault, B., Higuchi, N., Honorio Coronado, E. N., Keeling, H., Killeen, T. J., Laurance, W. F., Laurance, S., Licona, J., Magnussen, W. E., Marimon, B. S., Marimon-Junior, B. H., Mendoza, C., Neill, D. A., Nogueira, E. M., Nunez, P., Pallqui Camacho, N. C., Parada, A., Pardo-Molina, G., Peacock, J., Pena-Claros, M., Pickavance, G. C., Pitman, N. C. A., Poorter, L., Prieto, A., Quesada, C. A., Ramırez, F., Ramirez-Angulo, H., Restrepo, Z., Roopsind, A., Rudas, A., Salomao, R. P., Schwarz, M., Silva, N., Silva-Espejo, J. E., Silveira, M., Stropp, J., Talbot, J., Ter Steege, H., Teran-Aguilar, J., Terborgh, J., Thomas-Caesar, R., Toledo, M., Torello-Raventos, M., Umetsu, R. K., Van der Heijden, G. M. F., Van der Hout, P., Guimaraes Vieira, I. C., Vieira, S. A., Vilanova, E., Vos, V. A., & Zagt, R. J. (2015). Long-term decline of the Amazon carbon sink. Nature, 519, 344–348.

    CAS  Article  Google Scholar 

  9. Brown, S. (1996). Tropical forests and the global carbon cycle: estimating state and change in biomass density. Forest ecosystems, forest management and the global carbon cycle. Springer Berlin Heidelberg.

  10. Brown, S. (1997). Estimating biomass and biomass change in tropical forests. A primer. FAO Forestry Paper 134. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  11. Brown, S., & Lugo, A. E. (1992). Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia Caracas, 17(1), 8–18.

    CAS  Google Scholar 

  12. Brown, S., Iverson, L. R., Prasad, A., & Liu, D. (1993). Geographic distribution of carbon in biomass and soils of tropical Asian forests. Geocarto International, 8, 45–59.

    Article  Google Scholar 

  13. Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Ferreira, C. A. C., & Victoria, R. A. (1995). Uncertainty in the biomass of Amazonian forests: an example from Rondonia, Brazil. Forest Ecology and Management, 75, 175–189.

    Article  Google Scholar 

  14. Brunig, E. F. (1983). Structure and growth. In F. B. Golley (Ed.), Ecosystems of the world 14 a, tropical rain Forest ecosystems: structure and function (pp. 49–75). New York: Elsevier Scientific Publication.

    Google Scholar 

  15. Cairns, M. A., Brown, S., Helmer, E. H., & Baumgardner, G. A. (1997). Root biomass allocation in the world’s upland forests. Oecologia, 111, 1–11.

    Article  Google Scholar 

  16. Cannell, M. G. R. (1984). Woody biomass of forest stands. Forest Ecological Management, 8, 299–312.

    Article  Google Scholar 

  17. Cao, T., Valsta, L., & Makela, A. (2010). A comparison of carbon assessment methods for optimizing timber production and carbon sequestration in scots pine stands. Forest Ecology and Management, 260, 1726–1734.

    Article  Google Scholar 

  18. Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India. New Delhi: Govt. of India Press Pages, 404.

    Google Scholar 

  19. Chaturvedi, R. K., & Raghubanshi, A. S. (2013). Aboveground biomass estimation of small diameter woody species of tropical dry forest. New Forests, 44, 509–519.

    Article  Google Scholar 

  20. Chaturvedi, R. K., & Raghubanshi, A. S. (2015). Assessment of carbon density and accumulation in mono- and multi-specific stands in teak and sal forests of a tropical dry region in India. Forest Ecology and Management, 339, 11–21.

    Article  Google Scholar 

  21. Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2011a). Carbon density and accumulation in woody species of tropical dry forest in India. Forest Ecology and Management, 262, 1576–1588.

    Article  Google Scholar 

  22. Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2011b). Effect of small-scale variations in environmental factors on the distribution of woody species in tropical deciduous forests of Vindhyan highlands, India. Journal of Botany Article ID 297097, 10 pp. doi:10.1155/2011/297097.

  23. Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2011c). Plant functional traits with particular reference to tropical deciduous forests: a review. Journal of Biosciences, 36, 963–981.

    CAS  Article  Google Scholar 

  24. Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2012a). Effect of grazing and harvesting on diversity, recruitment and carbon accumulation of juvenile trees in tropical dry forests. Forest Ecology and Management, 284, 152–162.

    Article  Google Scholar 

  25. Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2012b). Biomass estimation of dry tropical woody species at juvenile stage. Scientific World Journal. doi:10.1100/2012/790219.

    Google Scholar 

  26. Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., & Hubbell, S. P. (2003). Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. Journal of Ecology, 91, 240–252.

    Article  Google Scholar 

  27. Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eames, D., Folster, H., Formard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riera, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.

    CAS  Article  Google Scholar 

  28. Chhabra, A., Palria, S., & Dadhwal, V. K. (2002). Spatial distribution of phytomass carbon in Indian forests. Global Change Biology, 8, 1230–1239.

    Article  Google Scholar 

  29. Chiba, Y. (1998). Architectural analysis of relationship between biomass and basal area based on pipe model theory. Ecological Modelling, 108, 219–225.

    Article  Google Scholar 

  30. Clark, D. B., & Clark, D. A. (2000). Landscape-scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management, 137(3), 185–198.

    Article  Google Scholar 

  31. Cordero, L. D. P., & Kanninen, M. (2002). Wood specific gravity and aboveground biomass of bombacopsis quinata plantations in Costa Rica. Forest Ecology and Management, 165, 3–9.

    Google Scholar 

  32. Ekoungoulou, R., Liu, X., Loumeto, J. J., Averti Ifo, S., Bocko, Y. E., Koula, F. E., & Shukui, N. (2014a). Tree Allometry in tropical forest of Congo for carbon stocks estimation in above-ground biomass. Open Journal of Forestry, 4, 481–491.

    Article  Google Scholar 

  33. Ekoungoulou, R., Liu, X., Ifo, S. A., Loumeto, J. J., & Folega, F. (2014b). Carbon stock estimation in secondary forest and gallery forest of Congo using allometric equations. International Journal of Scientific & Technology Research, 3, 465–474.

    Google Scholar 

  34. Fauset, S., Johnson, M. O., Gloor, M., Baker, T. R., Monteagudo, A., Brienen, R. J., Feldpausch, T. R., Lopez-Gonzalez, G., Malhi, Y., Ter Steege, H., Pitman, N. C., Vieira, S. A., Steininger, M., Rodrıguez, C. R., Restrepo, Z., Muelbert, A. E., Lewis, S. L., Pickavance, G. C., & Phillips, O. L. (2015). Hyperdominance in Amazonian forest carbon cycling. Nature Communications, 6, 6857.

    CAS  Article  Google Scholar 

  35. Foley, J. A. (1995). An equilibrium model of the terrestrial carbon budget. Tellus, 47B, 310–319.

    CAS  Article  Google Scholar 

  36. Foley, J. A., Costa, M. H., Delire, C., Ramankutty, N., & Snyder, P. (2003). Green surprise? How terrestrial ecosystems could affect earth’s climate. Frontiers in Ecology and the Environment, 1, 38–44.

    Google Scholar 

  37. FSI. (2015). State of the forest report 2015. Dehradun: Forest Survey of India, Ministry of Environment and Forests.

    Google Scholar 

  38. Gisel, R., Brown, S., Chapmen, J., Lugo, A.E. (1992). Wood densities of tropical tree species. General technical Report; S0–88 New Orleans, Louisiana.

  39. Haripriya, G. S. (2000). Estimates of biomass in Indian forests. Biomass and Bioenergy, 19(4), 245–258.

    Article  Google Scholar 

  40. Houghton, R. A., Hall, F., & Goetz, S. J. (2009). Importance of biomass in the global carbon cycle. Journal of Geophysical Research, 114, G00E03.

    Article  Google Scholar 

  41. Hu, Y., Su, Z., Li, W., Li, J., & Ke, X. (2015). Influence of tree species composition and community structure on carbon density in a subtropical forest. PloS One, 10(8), 136984.

    Google Scholar 

  42. IPCC. (2003). Good practice guidance for land use, land-use change and forestry. Hayama: Institute for Global Environmental Strategies (IGES).

    Google Scholar 

  43. IPCC. (2007). Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge: Cambridge University Press.

    Google Scholar 

  44. IPCC. (2014). Contribution of working group III to the fifth assessment report of the intergovernmental panel on Climate Change (eds Edenhofer O, Pichs-Madruga R, Sokona Y et al.) (pp. 1–30). Cambridge: Cambridge University Press.

    Google Scholar 

  45. Jackson, R. B., Mooney, H. A., & Schulze, E. D. (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of Natural Academic Science, USA, 94, 7362–7366.

    CAS  Article  Google Scholar 

  46. Jayakumar, S., Arockiasamy, D. I., & Britto, S. (2002). Forest type mapping and vegetation analysis in part of Kolli hills, Eastern Ghats of Tamil Nadu. Tropical Ecology, 43(2), 345–349.

    Google Scholar 

  47. Jobbágy, E. G., & Jackson, R. B. (2000). The vertical distribution of soil carbon and its relation to climate and vegetation. Ecological Applications, 10, 423–436.

    Article  Google Scholar 

  48. Joos, F., & Spahni, R. E. (2008). Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proceedings of the National Academy of Sciences (PNAS), 105(5), 1425–1430.

    CAS  Article  Google Scholar 

  49. Joshi, H. G., & Ghose, M. (2014). Community structure, species diversity, and aboveground biomass of the Sundarbans mangrove swamps. Tropical Ecology, 55, 283–303.

    Google Scholar 

  50. Joshi, N.R., Karki, S., Adhikari, M.D., Udas, E., Sherpa, S., Karky, B.S., Chettri, N., Kotru, R. & Ning, W. 2015. Development of allometric equations for Paulownia tomentosa (Thunb.) to estimate biomass and carbon stocks: an assessment from the ICIMOD Knowledge Park, Godavari, Nepal. ICIMOD Working Paper 2015/10, ICIMOD. International Centre for Integrated Mountain Development, GPO Box 3226, Kathmandu, Nepal. 41p.

  51. Junior, L. R. P., Andrade, E. M., Palácio, H. A. Q., Raymer, P. C. L., Filho, J. C. R., & Pereira, F. J. S. (2016). Carbon stocks in a tropical dry forest in Brazil. Review of Ciência Agronomica, 47(1), 32–40.

    Google Scholar 

  52. Juwarkar, A. A., Varghese, A. O., Singh, S. K., Aher, V. V., & Thawale, P. R. (2011). Carbon sequestration potential in aboveground biomass of natural reserve forest of central India. International journal of agriculture: Research and Review, 1(2), 80–86.

    Google Scholar 

  53. Kerr, R. A. (2007). Global warming is changing the world. Science, 316, 188–189.

    CAS  Article  Google Scholar 

  54. Kohl, M., Lasco, R., Cifuentes, M., Jonsson, O., Korhonen, K. T., Mundhenk, P., Navar, J. J., & Stinson, G. (2015). Changes in forest production, biomass and carbon: results from the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management, 352, 21–34.

    Article  Google Scholar 

  55. Kyoto Protocol, (1997). Kyoto Protocol of the United Nations Framework Convention on Climate Change, FCCC/CP/1997/7/Add.1, Decision 1CP.3, Annex 7 UN.

  56. Laurance, W. F., Fearnside, P. M., Laurance, S. G., Delamonica, P., Lovejoy, T. E., Rankin-de Merona, J. M., Chambers, J. Q., & Gascon, C. (1999). Relationship between soils and Amazon forest biomass: a landscape-scale study. Forest Ecology and Management, 118, 127–138.

    Article  Google Scholar 

  57. Lee, S., Lee, D., Yoon, T. K., Salim, K. A., Han, S., Yun, H. M., Yoon, M., Kim, E., Lee, W. K., Davies, S. J., & Son, Y. (2015). Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei. Journal of Ecology and Environment, 38(1), 75–84.

    Article  Google Scholar 

  58. Lewis, S. L., Phillips, O. L., Sheil, D., Vinceti, B., Baker, T. R., Brown, S., Graham, A. W., Higuchi, N., Hilbert, D. W., Laurance, W. F., & Lejoly, J. (2004). Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology, 92, 929–944.

    Article  Google Scholar 

  59. Lewis, S. L., Sonke, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., van der Heijden, G. M. F., Phillips, O. L., Affum-Baffoe, K., Baker, T. R., Banin, L., Bastin, J.-F., Beeckman, H., Boeckx, P., Bogaert, J., De Canniere, C., Chezeaux, E., Clark, C. J., Collins, M., Djagbletey, G., Djuikouo, M. N. K., Drois-sart, V., Doucet, J.-L., Ewango, C. E. N., Fauset, S., Feldpausch, T. R., Foli, E. G., Gillet, J.-F., Hamilton, A. C., Harris, D. J., Hart, T. B., de Haulleville, T., Hladik, A., Hufkens, K., Huy-gens, D., Jeanmart, P., Jeffery, K. J., Kearsley, E., Leal, M. E., Lloyd, J., Lovett, J. C., Makana, J.-R., Malhi, Y., Marshall, A. R., Ojo, L., Peh, K. S.-H., Pickavance, G., Poulsen, J. R., Re-itsma, J. M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H. E., Talbot, J., Taplin, J. R. D., Taylor, D., Thomas, S. C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L. J. T., Willcock, S., Woell, H., & Zemagho, L. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical transactions of The Royal Society Botany, 368, 1–17.

    Google Scholar 

  60. Madugundu, R., Vyjayanthi, N., & Jha, C. S. (2008). Estimation of LAI and above-ground biomass in deciduous forests: Western Ghats of Karnataka, India. International Journal of Applied Earth Observation and Geoinformation, 10, 211–219.

    Article  Google Scholar 

  61. Malhi, Y., Baldocchi, D. D., & Jarvis, P. G. (1999). The carbon balance of tropical, temperate and boreal forests. Plant, Cell & Environment, 22, 715–740.

    CAS  Article  Google Scholar 

  62. Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Monteagudo, A., Neill, D. A., Núñez-Vargas, P., Pitman, N. C. A., Quesada, C. A., Salomão, R., Silva, J. N. M., Torres-Lezama, A., Terborgh, J., Vásquez-Martínez, R., & Vinceti, B. (2006). The regional variation in aboveground live biomass in old-growth Amazonian forests. Global Change Biology, 12, 1107–1138.

    Article  Google Scholar 

  63. Mani, S., & Parthasarathy, N. (2007). Above-ground biomass estimation in ten tropical dry evergreen forest sites of peninsular India. Biomass and Bioenergy, 31, 284–290.

    Article  Google Scholar 

  64. Mani, S., & Parthasarathy, N. (2009). Tree population and above-ground biomass changes in two disturbed tropical dry evergreen forests of peninsular India. Tropical Ecology, 50(2), 249–258.

    Google Scholar 

  65. Mohanraj, R., Saravanan, J., & Dhanakumar, S. (2011). Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. iForest, 4, 61–65.

    Article  Google Scholar 

  66. Murali, K. S., Bhat, D. M., & Ravindranath, N. H. (2005). Biomass estimation equation for tropical deciduous and evergreen forests. International Journal of Agricultural Resources, Governance and Ecology, 4, 81–92.

    Article  Google Scholar 

  67. Murphy, P. G., & Lugo, A. E. (1986). Structure and biomass of a subtropical dry forest in Puerto Rico. Biotropica, 18, 89–96.

    Article  Google Scholar 

  68. NADP, (2008). Proceedings of The Meeting Conducted For The Formulation of National Agricultural Development Programme (2008–2009 To 2011–2012) In Tiruvannamalai District of Tamil Nadu India. 1–247.

  69. Navar, J., Mendez, E., & Dale, V. (2002). Estimating stand biomass in the Tamaulipan thornscrub of northeastern Mexico. Annals of Forest Science, 59, 813–821.

    Article  Google Scholar 

  70. Navar-Chaidez, J. (2011). The spatial distribution of aboveground biomass in tropical forests of Mexico. Tropical and Subtropical Agroecosystems, 13, 149–158.

    Google Scholar 

  71. NOAA. (2016). National Oceanic & Atmospheric Administration, The NOAA Annual Greenhouse Gas Index (Aggi) Noaa Earth System Research Laboratory, R/GMD, 325 Broadway, Boulder, CO 80305–3328.

  72. Paladines, V. C., & Ruiz, R. G. (2016). Floristic composition and structure of a deciduous dry forest from southern Ecuador: diversity and aboveground carbon accumulation. International Journal of Current Research and Academic Review, 4(3), 154–169.

    Article  Google Scholar 

  73. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.

    CAS  Article  Google Scholar 

  74. Pan, Y., Birdsey, R. A., Phillips, O. L., & Jackson, R. B. (2013). The structure, distribution, and biomass of the world’s forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593–622.

    Article  Google Scholar 

  75. Pande, P. K. (2005). Biomass and productivity in some disturbed tropical dry deciduous teak forest of Satpura plateau, Madhya Pradesh. Tropical Ecology, 46, 229–239.

    Google Scholar 

  76. Pawar, G. V., Singh, L., Jhariya, M. K., & Sahu, K. P. (2014). Effect of anthropogenic disturbances on biomass and carbon storage potential of a dry tropical forest in India. Journal of Applied and Natural Science, 6(2), 383–392.

    Google Scholar 

  77. Poorter, L., van der Sande, M. T., Thompson, J., Arets, E. J. M. M., Alarcón, A., Álvarez-Sánchez, J., Ascarrunz, N., Balvanera, P., Barajas-Guzmán, G., Boit, A., Bongers, F., Carvalho, F. A., Casanoves, F., Cornejo-Tenorio, G., Costa, F. R. C., de Castilho, C. V., Duivenvoorden, J. F., Dutrieux, L. P., Enquist, B. J., Fernández-Méndez, F., Finegan, B., Gormley, L. H. L., Healey, J. R., Hoosbeek, M. R., Ibarra-Manríquez, G., Junqueira, A. B., Levis, C., Licona, J. C., Lisboa, L. S., Magnusson, W. E., Martínez-Ramos, M., Martínez-Yrizar, A., Martorano, L. G., Maskell, L. C., Mazzei, L., Meave, J. A., Mora, F., Muñoz, R., Nytch, C., Pansonato, M. P., Parr, T. W., Paz, H., Pérez-García, E. A., Rentería, L. Y., Rodríguez-Velazquez, J., Rozendaal, D. M. A., Ruschel, A. R., Sakschewski, B., Salgado-Negret, B., Schietti, J., Simões, M., Sinclair, F. L., Souza, P. F., Souza, F. C., Stropp, J., ter Steege, H., Swenson, N. G., Thonicke, K., Toledo, M., Uriarte, M., van der Hout, P., Walker, P., Zamora, N., & Pena-Claros, M. (2015). Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24(11), 1314–1328.

    Article  Google Scholar 

  78. Prado-Junior, J. A., Schiavini, I., Vale, V. S., Arantes, C. S., van der Sande, M. T., Lohbeck, M., & Poorter, L. (2016). Conservative species drive biomass productivity in tropical dry forests. Journal of Ecology, 104, 817–827.

    Article  Google Scholar 

  79. Pragasan, L. A. (2015a). Assessment of tree carbon stock in the Kalrayan hills of the Eastern Ghats, India. Walailak Journal of Science and Technology, 12, 659–670.

    Google Scholar 

  80. Pragasan, A. L. (2015b). Tree carbon stock assessment from the tropical forests of Bodamalai Hills located in India. Journal of Earth Science & Climatic Change, 6, 314.

    Article  Google Scholar 

  81. Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patino, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, S., Dávila, E. A., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Coronado, E. M. H., Jimenez, T., Killeen, A. T., Lezama, G., Lloyd, G., López-González, E., Luizao, F. J., Malhi, Y., Monteagudo, A., Neill, D. A., Núnez, V. P., Paiva, R., Peacock, J., Penuela, M. C., Pena Cruz, A., Pitman, N., Priante Filho, N., Prieto, A., Ramırez, H., Rudas, A., Salomao, R., Santos, A. J. B., Schmerler, J., Silva, N., Silveira, M., Vásquez, R., Vieira, I., Terborgh, J., & Lloyd, J. (2012). Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9, 2203–2246.

    Article  Google Scholar 

  82. Rai, S. N. (1984). Bole, branch, current year twig, leaf and root biomass production in tropical rain (wet evergreen) forests of Western Ghats of Karnataka. Indian Forester, 110(9), 901–913.

    Google Scholar 

  83. Rai, S. N., & Proctor, J. (1986). Ecological studies on four rain forests in Karnataka, India I. Environment, structure, floristics and biomass. Journal of Ecology, 74, 439–454.

    Article  Google Scholar 

  84. Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., & Morel, A. (2011). Benchmark map of forest carbon stock in tropical regions across three continents. PNAS early edition, environmental sciences (pp. 1–6). Irvine: University of California.

    Google Scholar 

  85. Sahu, S. C., Suresh, H. S., & Ravindranath, N. H. (2016). Forest structure, composition and above ground biomass of tree community in tropical dry forests of Eastern Ghats, India. Notulae Scientia Biologicae, 8(1), 125–133.

    Article  Google Scholar 

  86. Salunkhe, O., Khare, P. K., Sahu, T. R., & Singh, S. (2014). Aboveground Biomass and carbon stocking in tropical deciduous forests of state of Madhya Pradesh, India. Taiwania, 59(4), 353–359.

    Google Scholar 

  87. Salunkhe, O., Khare, P. K., Sahu, T. R., & Singh, S. (2016). Estimation of tree biomass reserves in tropical deciduous forests of Central India by non-destructive approach. Tropical Ecology, 57(2), 153–161.

    Google Scholar 

  88. Schnitzer, S. A., Dewalt, S. J., & Chave, J. (2006). Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica, 38, 581–591.

    Article  Google Scholar 

  89. Sharma, R. (2010). Environmental impact assessment of water resources projects with special reference to Sathanur reservoir project, India.

  90. Sharma, C. M., Gairola, S., Baduni, N. P., Ghildiyal, S. K., & Sarvesh, S. (2011). Variation in carbon stocks on different slope aspects in seven major types of temperate region of Garhwal Himalaya, India. Journal of Biosciences, 36, 701–708.

    CAS  Article  Google Scholar 

  91. Sicard, P., & Dalstein-Richier, L. (2015). Health and vitality assessment of two common pine species in the context of climate change in southern Europe. Environmental Research, 137, 235–245.

    CAS  Article  Google Scholar 

  92. Singh, L., & Singh, J. S. (1991). Storage and flux of nutrients in a dry tropical forest in India. Annual of Botany, 68, 275–284.

    CAS  Article  Google Scholar 

  93. Singh, L., & Singh, J. S. (1993). Importance of short-lived components of a dry tropical forest for biomass production and nutrient cycling. Journal of Vegetation Science, 4, 681–686.

    Article  Google Scholar 

  94. Singh, L., Yadav, D. K., Pagare, P., Gosh, L., & Thakur, B. S. (2009). Impact of land use changes on species structure, biomass and carbon storage in tropical deciduous forest and converted forest. International Journal of Ecology and Environmental Sciences., 35(1), 113–119.

    Google Scholar 

  95. Slik, J. W. F., Aiba, S. I., Brearley, F. Q., Cannon, C. H., Forshed, O., Kitayama, K., Nagamasu, H., Nilus, R., Payne, J., Paoli, G., Poulsen, A. D., Raes, N., Sheil, D., Sidiyasa, K., Suzuki, E., & Valkenburg, J. L. C. H. V. (2010). Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Global Ecology and Biogeography, 19, 50–60.

    Article  Google Scholar 

  96. Slik, J. W. F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., & Clark, C. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261–1271.

    Article  Google Scholar 

  97. Spracklen, D. V., & Righelato, R. (2016). Carbon storage and sequestration of re-growing montane forests in southern Ecuador. Forest Ecology and Management, 364, 139–144.

    Article  Google Scholar 

  98. Dar, J. A., & Sundarapandian, S. M. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187, 55. doi:10.1007/s10661-015-4299-7.

    Article  Google Scholar 

  99. Sundarapandian, S. M., Dar, J. A., Gandhi, D. S., Srinivas, K. K., & Subashree, K. (2013). Estimation of biomass and carbon stocks in tropical dry forests in Sivagangai district, Tamil Nadu, India. International Journal of Environmental Science and Engineering research, 4(3), 66–76.

    Google Scholar 

  100. Sundarapandian, S. M., Mageswaran, K., Sanjay Gandhi, D., & Dar, J. A. (2014a). Impact of thane cyclone on tree damage in Pondicherry University campus, Puducherry, India. Current World Environment, 9(2), 287–300.

  101. Sundarapandian, S. M., Amritha, S., Gowsalya, L., Kayathri, P., Thamizharasi, M., Dar, J. A., Srinivas, K., & Gandhi, D. S. (2014b). Biomass and carbon stock assessments of woody vegetation in Pondicherry University campus, Puducherry. International Journal of Environmental Biology, 4(2), 87–99.

  102. Sundarapandian, S. M., Naveenkumar, J. & Arunkumar, K. S. (2016). Diversity and carbon stocks of Liana Community in tropical dry forests of Javadi Hill, Eastern Ghats. National Conference on “Climate Change Impacts and Natural Resource Management”-18th & 19th February 2016 Technical Sessions. 109–117.

  103. Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G., & Zimov, S. (2009). Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeo- chemical Cycles, 23, GB2023.

    Google Scholar 

  104. Usuga, J. C., Toro, J. A., Alzate, M. V., & Tapias, A. D. J. L. (2010). Estimation of biomass and carbon stocks in plants, soil and forest floor in different tropical forests. Forest Ecology and Management, 260, 1906–1913.

    Article  Google Scholar 

  105. Whitmore, T. C. (1984). Tropical rain forests of the Far East (second ed.). Oxford: Clarendon Press.

    Google Scholar 

  106. WHO. (2015). Climate change and human health, Switzerland

  107. Wiemann, M. C., & Green, D. W. (2007). Estimating Janka hardness from specific gravity for tropical and temperate species. Research Paper FPL-RP-643. Madison: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory 21p.

    Google Scholar 

Download references

Acknowledgements

The first author thanks the University Grants Commission (UGC), Government of India for fellowship. We are grateful to forest officials, Department of Forest, Tamil Nadu, for permission to conduct the field work. We thank the two anonymous reviewers for their valuable comments and suggestions to enhance quality of the article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Somaiah Sundarapandian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gandhi, D.S., Sundarapandian, S. Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India. Environ Monit Assess 189, 187 (2017). https://doi.org/10.1007/s10661-017-5899-1

Download citation

Keywords

  • Carbon storage
  • Carbon mitigation
  • Eastern Ghats
  • Tropical dry forest
  • Biomass