Skip to main content
Log in

Simultaneous spectrophotometric determination of crystal violet and malachite green in water samples using partial least squares regression and central composite design after preconcentration by dispersive solid-phase extraction

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this paper, a simple, fast, and inexpensive method is introduced for the simultaneous spectrophotometric determination of crystal violet (CV) and malachite green (MG) contents in aquatic samples using partial least squares regression (PLS) as a multivariate calibration technique after preconcentration by graphene oxide (GO). The method was based on the sorption and desorption of analytes onto GO and direct determination by ultraviolet–visible spectrophotometric techniques. GO was synthesized according to Hummers method. To characterize the shape and structure of GO, FT-IR, SEM, and XRD were used. The effective factors on the extraction efficiency such as pH, extraction time, and the amount of adsorbent were optimized using central composite design. The optimum values of these factors were 6, 15 min, and 12 mg, respectively. The maximum capacity of GO for the adsorption of CV and MG was 63.17 and 77.02 mg g−1, respectively. Preconcentration factors and extraction recoveries were obtained and were 19.6, 98% for CV and 20, 100% for MG, respectively. LOD and linear dynamic ranges for CV and MG were 0.009, 0.03–0.3, 0.015, and 0.05–0.5 (μg mL−1), respectively. The intra-day and inter-day relative standard deviations were 1.99 and 0.58 for CV and 1.69 and 3.13 for MG at the concentration level of 50 ng mL−1, respectively. Finally, the proposed DSPE/PLS method was successfully applied for the simultaneous determination of the trace amount of CV and MG in the real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams, M. J. (2004). Chemometrics in analytical spectroscopy. RSC Adv.

  • Ahmad, R. (2009). Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 171(1), 767–773.

    Article  CAS  Google Scholar 

  • Ali, H., & Muhammad, S. K. (2008). Biosorption of crystal violet from water on leaf biomass of Calotropis procera. Journal of Environmental Science and Technology, 1(3), 143–150.

    Article  CAS  Google Scholar 

  • Allen, J. L., & Meinertz, J. R. (1991). Post-column reaction for simultaneous analysis of chromatic and leuco forms of malachite green and crystal violet by high-performance liquid chromatography with photometric detection. Journal of Chromatography. A, 536, 217–222.

    Article  CAS  Google Scholar 

  • An, L., Deng, J., Zhou, L., Li, H., Chen, F., Wang, H., et al. (2010). Simultaneous spectrophotometric determination of trace amount of malachite green and crystal violet in water after cloud point extraction using partial least squares regression. Journal of Hazardous Materials, 175(1), 883–888.

    Article  CAS  Google Scholar 

  • Badruddoza, A. Z. M., Hazel, G. S. S., Hidajat, K., & Uddin, M. S. (2010). Synthesis of carboxymethyl-β-cyclodextrin conjugated magnetic nano-adsorbent for removal of methylene blue. Colloids and Surfaces, 367(1), 85–95.

    Article  CAS  Google Scholar 

  • Brereton, R. G. (2003). Chemometrics: data analysis for the laboratory and chemical plant. New York: Wiley.

    Book  Google Scholar 

  • Chakraborty, S., Chowdhury, S., & Saha, P. D. (2011). Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533–1541.

    Article  Google Scholar 

  • Chen, H., Chen, Y., Zhan, H., & Fu, S. (2011). Chemometrics-assisted spectrophotometry method for the determination of chemical oxygen demand in pulping effluent. Environmental Monitoring and Assessment, 175(1), 321–329.

    Article  CAS  Google Scholar 

  • Cheriaa, J., & Bakhrouf, A. (2009). Triphenylmethanes, malachite green and crystal violet dyes decolourisation by Sphingomonas paucimobilis. Annales de Microbiologie, 59(1), 57.

    Article  CAS  Google Scholar 

  • Cho, I.-H., & Zoh, K.-D. (2007). Photocatalytic degradation of azo dye (Reactive Red 120) in TiO 2/UV system: optimization and modeling using a response surface methodology (RSM) based on the central composite design. Dyes and Pigments, 75(3), 533–543.

    Article  CAS  Google Scholar 

  • Crini, G., Peindy, H. N., Gimbert, F., & Robert, C. (2007). Removal of CI Basic Green 4 (Malachite Green) from aqueous solutions by adsorption using cyclodextrin-based adsorbent: kinetic and equilibrium studies. Separation and Purification Technology, 53(1), 97–110.

    Article  CAS  Google Scholar 

  • Dhodapkar, R., Rao, N. N., Pande, S. P., Nandy, T., & Devotta, S. (2007). Adsorption of cationic dyes on Jalshakti®, super absorbent polymer and photocatalytic regeneration of the adsorbent. Reactive and Functional Polymers, 67(6), 540–548.

    Article  CAS  Google Scholar 

  • Dowling, G., Mulder, P. P. J., Duffy, C., Regan, L., & Smyth, M. R. (2007). Confirmatory analysis of malachite green, leucomalachite green, crystal violet and leucocrystal violet in salmon by liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 586(1), 411–419.

    Article  CAS  Google Scholar 

  • Ebadi, A., & Rafati, A. A. (2015). Preparation of silica mesoporous nanoparticles functionalized with β-cyclodextrin and its application for methylene blue removal. Journal of Molecular Liquids, 209, 239–245.

    Article  CAS  Google Scholar 

  • Garg, V. K., Gupta, R., Yadav, A. B., & Kumar, R. (2003). Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology, 89(2), 121–124.

    Article  CAS  Google Scholar 

  • Ghaedi, M., Negintaji, G., & Marahel, F. (2014). Solid phase extraction and removal of brilliant green dye on zinc oxide nanoparticles loaded on activated carbon: new kinetic model and thermodynamic evaluation. Journal of Industrial and Engineering Chemistry, 20(4), 1444–1452.

    Article  CAS  Google Scholar 

  • Ghasemi, J. B., & Hashemi, B. (2011). Surfactant-mediated complex formation for determination of traces amounts of zinc, cadmium, and lead with 4-(2-thiazolylazo) resorcinol and chemometric methods. Environmental Monitoring and Assessment, 183(1–4), 57–63.

    Article  CAS  Google Scholar 

  • Ghasemi, J. B., & Zolfonoun, E. (2013). Simultaneous spectrophotometric determination of trace amount of polycyclic aromatic hydrocarbons in water samples after magnetic solid-phase extraction by using projection pursuit regression. Environmental Monitoring and Assessment, 185(3), 2297–2305.

    Article  CAS  Google Scholar 

  • Ghasemi, J., Niazi, A., & Safavi, A. (2001). Simultaneous catalytic determination of cobalt, nickel, and copper using resazurine sulfide reaction and partial least squares calibration method. Analytical Letters, 34(8), 1389–1399.

    Article  CAS  Google Scholar 

  • González, J. A., Villanueva, M. E., Piehl, L. L., & Copello, G. J. (2015). Development of a chitin/graphene oxide hybrid composite for the removal of pollutant dyes: adsorption and desorption study. Chemical Engineering Journal, 280, 41–48.

    Article  Google Scholar 

  • Gupta, V. K. (2009). Application of low-cost adsorbents for dye removal—a review. Journal of Environmental Management, 90(8), 2313–2342.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Srivastava, S. K., & Mohan, D. (1997). Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Industrial and Engineering Chemistry Research, 36(6), 2207–2218.

    Article  CAS  Google Scholar 

  • Hummers Jr., W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6), 1339–1339.

    Article  CAS  Google Scholar 

  • Janoš, P. (2003). Sorption of basic dyes onto iron humate. Environmental Science & Technology, 37(24), 5792–5798.

    Article  Google Scholar 

  • Karthika, P., Rajalakshmi, N., & Dhathathreyan, K. S. (2012). Functionalized exfoliated graphene oxide as supercapacitor electrodes. Soft Nanoscience Letters, 2, 59–66

  • Khani, R., Ghasemi, J. B., & Shemirani, F. (2014). Simultaneous multicomponent spectrophotometric monitoring of methyl and propyl parabens using multivariate statistical methods after their preconcentration by robust ionic liquid-based dispersive liquid–liquid microextraction. Spectrochim Acta Part A, 122, 295–303.

    Article  CAS  Google Scholar 

  • Khattri, S. D., & Singh, M. K. (1999). Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorption Science and Technology, 17(4), 269–282.

    Article  CAS  Google Scholar 

  • Khattri, S. D., & Singh, M. K. (2000). Colour removal from synthetic dye wastewater using a bioadsorbent. Water, Air, & Soil Pollution, 120(3–4), 283–294.

    Article  CAS  Google Scholar 

  • Khattri, S. D., & Singh, M. K. (2009). Removal of malachite green from dye wastewater using neem sawdust by adsorption. Journal of Hazardous Materials, 167(1), 1089–1094.

    Article  CAS  Google Scholar 

  • Li, S. (2010). Removal of crystal violet from aqueous solution by sorption into semi-interpenetrated networks hydrogels constituted of poly (acrylic acid-acrylamide-methacrylate) and amylose. Bioresource Technology, 101(7), 2197–2202.

    Article  CAS  Google Scholar 

  • Liu, F., Chung, S., Oh, G., & Seo, T. S. (2012a). Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. Mater Interfaces, 4(2), 922–927.

    Article  CAS  Google Scholar 

  • Liu, Q., Shi, J., & Jiang, G. (2012b). Application of graphene in analytical sample preparation. Trends in Analytical Chemistry; TrAC, 37, 1–11.

    Article  Google Scholar 

  • Namasivayam, C., Kumar, M. D., Selvi, K., Begum, R. A., Vanathi, T., & Yamuna, R. T. (2001). ‘Waste’ coir pith—a potential biomass for the treatment of dyeing wastewaters. Biomass and Bioenergy, 21(6), 477–483.

    Article  CAS  Google Scholar 

  • Nandi, B. K., Goswami, A., & Purkait, M. K. (2009). Removal of cationic dyes from aqueous solutions by kaolin: kinetic and equilibrium studies. Applied Clay Science, 42(3), 583–590.

    Article  CAS  Google Scholar 

  • Osborne, S. D., Künnemeyer, R., & Jordan, R. B. (1997). Method of wavelength selection for partial least squares. Analyst, 122(12), 1531–1537.

    Article  CAS  Google Scholar 

  • Parab, H., Sudersanan, M., Shenoy, N., Pathare, T., & Vaze, B. (2009). Use of agro-industrial wastes for removal of basic dyes from aqueous solutions. Clean-Soil Air Water, 37(12), 963–969.

    Article  CAS  Google Scholar 

  • Porkodi, K., & Kumar, K. V. (2007). Equilibrium, kinetics and mechanism modeling and simulation of basic and acid dyes sorption onto jute fiber carbon: eosin yellow, malachite green and crystal violet single component systems. Journal of Hazardous Materials, 143(1), 311–327.

    Article  CAS  Google Scholar 

  • Rofouei, M. K., Amiri, N., & Ghasemi, J. B. (2015). Application of multivariate optimization procedures for preconcentration and determination of Au (III) and Pt (IV) in aqueous samples with graphene oxide by X-ray fluorescence spectrometry. Environmental Monitoring and Assessment, 187(3), 149.

    Article  Google Scholar 

  • Sadeghi, S. J., Seidi, S., & Ghasemi, J. B. (2017). Graphene oxide–alizarin yellow R–magnetic chitosan nanocomposite: a selective and efficient sorbent for sub-trace determination of aluminum in water samples. Analytical Methods, 9(2), 222–231.

    Article  CAS  Google Scholar 

  • Sanyal, D., Rani, A., Alam, S., Gujral, S., & Gupta, R. (2011). Development, validation, and uncertainty measurement of multi-residue analysis of organochlorine and organophosphorus pesticides using pressurized liquid extraction and dispersive-SPE techniques. Environmental Monitoring and Assessment, 182(1), 97–113.

    Article  CAS  Google Scholar 

  • Satapathy, M. K., & Das, P. (2014). Optimization of crystal violet dye removal using novel soil-silver nanocomposite as nanoadsorbent using response surface methodology. Journal of Environmental Chemical Engineering, 2(1), 708–714.

    Article  CAS  Google Scholar 

  • Sekhar, C. P., Kalidhasan, S., Rajesh, V., & Rajesh, N. (2009). Bio-polymer adsorbent for the removal of malachite green from aqueous solution. Chemosphere, 77(6), 842–847.

    Article  Google Scholar 

  • Senthilkumaar, S., Kalaamani, P., & Subburaam, C. V. (2006). Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. Journal of Hazardous Materials, 136(3), 800–808.

    Article  CAS  Google Scholar 

  • Sharma, P., Kaur, H., Sharma, M., & Sahore, V. (2011). A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste. Environmental Monitoring and Assessment, 183(1–4), 151–195.

    Article  CAS  Google Scholar 

  • Shibata, S., Furukawa, M., & Goto, K. (1969). Dual-wavelength spectrophotometry: general method. Analytica Chimica Acta, 46(2), 271–279.

    Article  CAS  Google Scholar 

  • Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66(3), 319–329.

    Article  CAS  Google Scholar 

  • Sun, H., Wang, L., Qin, X., & Ge, X. (2011a). Simultaneous determination of malachite green, enrofloxacin and ciprofloxacin in fish farming water and fish feed by liquid chromatography with solid-phase extraction. Environmental Monitoring and Assessment, 179(1), 421–429.

    Article  CAS  Google Scholar 

  • Sun, H., Cao, L., & Lu, L. (2011b). Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Research, 4(6), 550–562.

    Article  CAS  Google Scholar 

  • Tahir, S. S., & Rauf, N. (2006). Removal of a cationic dye from aqueous solutions by adsorption onto bentonite clay. Chemosphere, 63(11), 1842–1848.

    Article  CAS  Google Scholar 

  • Tsai, C.-H., Lin, J.-D., & Lin, C.-H. (2007). Optimization of the separation of malachite green in water by capillary electrophoresis Raman spectroscopy (CE-RS) based on the stacking and sweeping modes. Talanta, 72(2), 368–372.

    Article  CAS  Google Scholar 

  • Wang, X. S., Liu, X., Wen, L., Zhou, Y., Jiang, Y., & Li, Z. (2008). Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents. Separation Science and Technology, 43(14), 3712–3731.

    Article  CAS  Google Scholar 

  • Wang, Y., Liao, K., Huang, X., & Yuan, D. (2015). Simultaneous determination of malachite green, crystal violet and their leuco-metabolites in aquaculture water samples using monolithic fiber-based solid-phase microextraction coupled with high performance liquid chromatography. Analytical Methods, 7(19), 8138–8145.

    Article  CAS  Google Scholar 

  • Whitcomb, P. J., & Anderson, M. J. (2004). RSM simplified: optimizing processes using response surface methods for design of experiments. Boca Raton: CRC Press.

    Google Scholar 

  • Wu, Q., Feng, C., Wang, C., & Wang, Z. (2013). A facile one-pot solvothermal method to produce superparamagnetic graphene–Fe3O4 nanocomposite and its application in the removal of dye from aqueous solution. Colloids and Surfaces, B: Biointerfaces, 101, 210–214.

    Article  CAS  Google Scholar 

  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in Colloid and Interface Science, 209, 172–184.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, Y., Zhang, C., & Jing, Y. (2008). Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. Journal of Hazardous Materials, 150(3), 774–782.

    Article  CAS  Google Scholar 

  • Zolgharnein, J., Shahmoradi, A., & Ghasemi, J. B. (2013). Comparative study of Box–Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves. Journal of Chemometrics, 27(1–2), 12–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the K. N. Toosi University of Technology, Tehran, Iran is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahan B. Ghasemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razi-Asrami, M., Ghasemi, J.B., Amiri, N. et al. Simultaneous spectrophotometric determination of crystal violet and malachite green in water samples using partial least squares regression and central composite design after preconcentration by dispersive solid-phase extraction. Environ Monit Assess 189, 196 (2017). https://doi.org/10.1007/s10661-017-5898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5898-2

Keywords

Navigation