Skip to main content
Log in

Toxic elements in the stream sediments of an urbanized basin, Eastern China: urbanization greatly elevates their adverse biological effects

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The concentration of toxic elements (Hg, Cd, Cr, Cu, Pb, Zn, Ni and As) was measured in the sediments of the Qinhuai River in Eastern China along a rural to urban gradient. Multiple approaches were undertaken to evaluate the degree of enrichment and adverse biological effects of these elements. The results showed that the concentration of Hg, Cd, Zn, Cu and Pb increased exponentially from the agricultural headwater to the urbanized downstream, which reflects a severe anthropogenic influence. In addition, area-specific references, such as the local soil background (LSB) and upper continental crust (UCC) derived from the Yangtze craton, were more applicable for evaluating the enrichment of toxic elements in the Qinhuai River than was global UCC. In addition, Cd and Hg had the highest enrichment factor values (EF, with averages of 9.18 and 7.14, respectively); Zn, Pb and Cu had moderate EFs (averages from 1.52 to 2.40), while the average EFs of Ni, Cr and As were approximately equal to 1. Based on consensus-based sediment quality guidelines (SQGs), the contamination characteristics of all of the samples studied were associated with low to moderate priority of adverse biological effects (ABEs) in the rural upstream area, while it was associated with a high to moderate priority of ABEs in the urban sections of the Qinhuai River. Our results suggest that the adverse biological effects of elevated levels of toxic elements were strongly related to the degree of anthropogenic pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Apeagyei, E., Bank, M. S., & Spengler, J. D. (2011). Distribution of heavy metals in road dust along an urban-rural gradient in Massachusetts. Atmospheric Environment, 45, 2310–2323.

    Article  CAS  Google Scholar 

  • Bain, D., Yesilonis, I., & Pouyat, R. (2012). Metal concentrations in urban riparian sediments along an urbanization gradient. Biogeochemistry, 107, 67–79. doi:10.1007/s10533-010-9532-4.

    Article  CAS  Google Scholar 

  • Burton, J., & Allen, G. (2002). Sediment quality criteria in use around the world. Limnology, 3, 65–76. doi:10.1007/s102010200008.

    Article  CAS  Google Scholar 

  • Cao, Q., Song, Y., Zhang, Y., Wang, R., & Liu, J. (2015). Risk analysis on heavy metal contamination in sediments of rivers flowing into Nansi Lake. Environemental Science and Pollution Research, 1–9. doi:10.1007/s11356-015-4655-8.

  • Chambers, L. G., et al. (2016). Developing the scientific framework for urban geochemistry. Applied Geochemistry, 67, 1–20. doi:10.1016/j.apgeochem.2016.01.005.

    Article  CAS  Google Scholar 

  • Chen, M., Ma, L. Q., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida surface soils. Journal of Environmental Quality, 28, 1173–1181.

    Article  CAS  Google Scholar 

  • Cloquet, C., Carignan, J., & Libourel, G. (2006). Isotopic composition of Zn and Pb atmospheric depositions in an urban/periurban area of northeastern France. Environmental Science & Technology, 40, 6594–6600. doi:10.1021/es0609654.

    Article  CAS  Google Scholar 

  • Covelli, S., & Fontolan, G. (1997). Application of a normalization procedure in determining regional geochemical baselines. Environmental Geology, 30, 34–45.

    Article  CAS  Google Scholar 

  • Davis, A. P., Shokouhian, M., & Ni, S. (2001). Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere, 44, 997–1009. doi:10.1016/S0045-6535(00)00561-0.

    Article  CAS  Google Scholar 

  • Gao, X., & Chen, C.-T. (2012). Heavy metal pollution status in surface sediments of the coastal Bohai Bay. Water Research, 46, 1901–1911.

    Article  CAS  Google Scholar 

  • Gao, S., Luo, T.-C., Zhang, B.-R., Zhang, H.-F., Han, Y.-W., Zhao, Z.-D., & Hu, Y.-K. (1998). Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62, 1959–1975.

    Article  CAS  Google Scholar 

  • Gao, H., Bao, W., & Zhang, S. (2001). A study of pollution chemistry and ecological toxicology in sediment-laden river. Zhengzhou: Yellow River Conservancy Publishing House.

    Google Scholar 

  • Kara, M., Dumanoglu, Y., Altiok, H., Elbir, T., Odabasi, M., & Bayram, A. (2015). Spatial variation of trace elements in seawater and sediment samples in a heavily industrialized region. Environmental Earth Sciences, 73, 405–421. doi:10.1007/s12665-014-3434-z.

    Article  CAS  Google Scholar 

  • Kaushal, S. S., McDowell, W. H., & Wollheim, W. M. (2014). Tracking evolution of urban biogeochemical cycles: past, present, and future. Biogeochemistry, 121, 1–21. doi:10.1007/s10533-014-0014-y.

    Article  CAS  Google Scholar 

  • Kuusisto-Hjort, P., & Hjort, J. (2013). Land use impacts on trace metal concentrations of suburban stream sediments in the Helsinki region. Finland Science of the Total Environment, 456, 222–230.

    Article  Google Scholar 

  • Le Pape, P., Ayrault, S., & Quantin, C. (2012). Trace element behavior and partition versus urbanization gradient in an urban river (Orge River, France). Journal of Hydrology, 472, 99–110.

    Article  Google Scholar 

  • Le Pape, P., Ayrault, S., Michelot, J.-L., Monvoisin, G., Noret, A., & Quantin, C. (2013). Building an isotopic hydrogeochemical indicator of anthropogenic pressure on urban rivers. Chemical Geology, 344, 63–72.

    Article  CAS  Google Scholar 

  • Li, H.-B., et al. (2012a). Urbanization increased metal levels in lake surface sediment and catchment topsoil of waterscape parks. Science of the Total Environment, 432, 202–209.

    Article  CAS  Google Scholar 

  • Li, H., Yu, S., Li, G., & Deng, H. (2012b). Lead contamination and source in Shanghai in the past century using dated sediment cores from urban park lakes. Chemosphere, 88, 1161–1169.

    Article  CAS  Google Scholar 

  • Liao, Q., et al. (2011). Geochemical baseline values of elements in soil of Jiangsu Province. Geology in China, 38, 1363–1378 (in Chinese).

    CAS  Google Scholar 

  • Lin, C., He, M., Liu, X., Guo, W., & Liu, S. (2013). Contamination and ecological risk assessment of toxic trace elements in the Xi River, an urban river of Shenyang city. China Environmental Monitoring and Assessment, 185, 4321–4332. doi:10.1007/s10661-012-2871-y.

    Article  CAS  Google Scholar 

  • Long, E. R., Morgan, L. G. (1990). The potential for biological effects of sediments-sorbed contaminants tested in the National Status and Trends Program. National Oceanic and Atmospheric Admininistration.

  • Long, E. R., MacDonald, D. D., Severn, C. G., & Hong, C. B. (2000). Classifying probabilities of acute toxicity in marine sediments with empirically derived sediment quality guidelines. Environmental Toxicology and Chemistry, 19, 2598–2601.

    Article  CAS  Google Scholar 

  • Ma, X., et al. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272. doi:10.1016/j.chemosphere.2015.08.026.

    Article  CAS  Google Scholar 

  • MacDonald, D. D., Ingersoll, C. G., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39, 20–31. doi:10.1007/s002440010075.

    Article  CAS  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal, 2, 108–118.

    Google Scholar 

  • Palma, P., Ledo, L., & Alvarenga, P. (2015). Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: the case study of Alqueva reservoir (Guadiana Basin). Catena, 128, 174–184. doi:10.1016/j.catena.2015.02.002.

    Article  CAS  Google Scholar 

  • Pejman, A., Nabi Bidhendi, G., Ardestani, M., Saeedi, M., & Baghvand, A. (2015). A new index for assessing heavy metals contamination in sediments: a case study. Ecological Indicators, 58, 365–373. doi:10.1016/j.ecolind.2015.06.012.

    Article  CAS  Google Scholar 

  • Pourabadehei, M., & Mulligan, C. N. (2016). Selection of an appropriate management strategy for contaminated sediment: a case study at a shallow contaminated harbour in Quebec. Canada Environmental Pollution, 219, 846–857.

    Article  CAS  Google Scholar 

  • Reimann, C., & de Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science & Technology, 34, 5084–5091.

    Article  CAS  Google Scholar 

  • Sansalone, J. J., Hird, J. P., Cartledge, F. K., & Tittlebaum, M. E. (2005). Event-based stormwater quality and quantity loadings from elevated urban infrastructure affected by transportation. Water Environment Research, 77, 348–365.

    Article  CAS  Google Scholar 

  • Singh, M., Müller, G., & Singh, I. B. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain. India Water, Air, and Soil Pollution, 141, 35–54. doi:10.1023/A:1021339917643.

    Article  CAS  Google Scholar 

  • Smith, S. L., MacDonald, D. D., Keenleyside, K. A., Ingersoll, C. G., & Field, L. J. (1996). A preliminary evaluation of sediment quality assessment values for freshwater ecosystems. Journal of Great Lakes Research, 22, 624–638.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33, 241–265.

    Article  Google Scholar 

  • Tippler, C., Wright, I. A., Davies, P. J., & Hanlon, A. (2014). The influence of concrete on the geochemical qualities of urban streams. Marine and Freshwater Research, 65, 1009–1017. doi:10.1071/MF13164.

    Article  CAS  Google Scholar 

  • Tomlinson, D., Wilson, J., Harris, C., & Jeffrey, D. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33, 566–575.

    Article  Google Scholar 

  • Violintzis, C., Arditsoglou, A., & Voutsa, D. (2009). Elemental composition of suspended particulate matter and sediments in the coastal environment of Thermaikos Bay, Greece: delineating the impact of inland waters and wastewaters. Journal of Hazardous Materials, 166, 1250–1260.

    Article  CAS  Google Scholar 

  • Wicke, D., Cochrane, T. A., O’Sullivan, A. D., Cave, S., & Derksen, M. (2014). Effect of age and rainfall pH on contaminant yields from metal roofs. Water Science and Technology, 69, 2166–2173. doi:10.2166/wst.2014.124.

    Article  CAS  Google Scholar 

  • Wright, I. A., Davies, P. J., Findlay, S. J., & Jonasson, O. J. (2011). A new type of water pollution: concrete drainage infrastructure and geochemical contamination of urban waters. Marine and Freshwater Research, 62(12), 1355–1361. doi:10.1071/MF10296.

  • Yu, S., et al. (2014). Anthropogenic land uses elevate metal levels in stream water in an urbanizing watershed. Science of the Total Environment, 488–489, 61–69. doi:10.1016/j.scitotenv.2014.04.061.

    Article  Google Scholar 

  • Yuan, X., Zhang, L., Li, J., Wang, C., & Ji, J. (2014). Sediment properties and heavy metal pollution assessment in the river, estuary and lake environments of a fluvial plain. China Catena, 119, 52–60. doi:10.1016/j.catena.2014.03.008.

    Article  CAS  Google Scholar 

  • Zhao, S., Feng, C., Wang, D., Tian, C., & Shen, Z. (2014). Relationship of metal enrichment with adverse biological effect in the Yangtze Estuary sediments: role of metal background values. Environemental Science and Pollution Research, 21, 464–472. doi:10.1007/s11356-013-1856-x.

    Article  Google Scholar 

  • Zoller, W. H., Gladney, E., & Duce, R. A. (1974). Atmospheric concentrations and sources of trace metals at the South Pole. Science, 183, 198–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Natural Science Foundation of China (NSFC, No. 41271467) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., Yin, A., Yang, X. et al. Toxic elements in the stream sediments of an urbanized basin, Eastern China: urbanization greatly elevates their adverse biological effects. Environ Monit Assess 189, 167 (2017). https://doi.org/10.1007/s10661-017-5887-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5887-5

Keywords

Navigation