Skip to main content

Soil organic matter as sole indicator of soil degradation

Abstract

Soil organic matter (SOM) is known to play vital roles in the maintenance and improvement of many soil properties and processes. These roles, which largely influence soil functions, are a pool of specific contributions of different components of SOM. The soil functions, in turn, normally define the level of soil degradation, viewed as quantifiable temporal changes in a soil that impairs its quality. This paper aims at providing a generalized assessment of the current state of knowledge on the usefulness of SOM in monitoring soil degradation, based on its influence on the physical, chemical and biological properties and processes of soils. Emphasis is placed particularly on the effect of SOM on soil structure and availability of plant nutrients. Although these properties are discussed separately, the soil system is of dynamic and interactive nature, and changes in one property will likely affect other soil properties as well. Thus, functions of SOM almost always affect various soil properties and processes and engage in multiple reactions. In view of its role in soil aggregation and erosion control, in availability of plant nutrients and in ameliorating other forms of soil degradation than erosion, SOM has proven to be an important indicator of soil degradation. It has been suggested, however, that rather than the absolute amount, temporal change and potential amount of SOM be considered in its use as indicator of soil degradation, and that SOM may not be an all-purpose indicator. Whilst SOM remains a candidate without substitute as long as a one-parameter indicator of soil degradation is needed, narrowing down to the use of its labile and microbial components could be more appropriate, since early detection is important in the control and management of soil degradation.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abril, A., Casado-Murillo, N., Vázquez, C., & Olivera, P. (2013). Labile and recalcitrant carbon in crop residue and soil under no-till practices in central region of Argentina. The Open Agriculture Journal, 7(Suppl 1-M5), 32–39.

    Article  Google Scholar 

  • Acton, D. F., & Gregorich, L. J. (1995). Understanding soil health. In D. F. Acton & L. J. Gregorich (Eds.), The health of our soils: toward sustainable agriculture in Canada (pp. 5–10). Ottawa: Centre for Land and Biological Resources Research.

    Chapter  Google Scholar 

  • Al-Kaisi, M. M., Douelle, A., & Kwaw-Mensah, D. (2014). Soil microaggregate and macroaggregate decay over time and soil carbon change as influenced by different tillage systems. Journal of Soil & Water Conservation, 69, 574–580.

    Article  Google Scholar 

  • Angers, D. A., & Carter, M. R. (1996). Aggregation and organic matter storage in cool, humid agricultural soils. In M. R. Carter & B. A. Stewart (Eds.), Structure and organic matter storage in agricultural soils (pp. 193–211). Boca Raton: CRC Press LLC.

    Google Scholar 

  • Anikwe, M. A. N. (2006). Soil quality assessment and monitoring: a review of current research efforts. Enugu: New Generation Books.

    Google Scholar 

  • Arias, M., Barral, M. T., & Diaz-Fierros, F. (1996). Effect of association between humic acids and iron or aluminium on the flocculation and aggregation of kaolin and quartz. European Journal of Soil Science, 47, 335–343.

    CAS  Article  Google Scholar 

  • Asadu, C. L. A., & Akamigbo, F. O. R. (1990). Relative contributions of organic matter and clay fractions to cation exchange capacity of soils in southeastern Nigeria. Samaru Journal of Agricultural Research, 7, 17–23.

    Google Scholar 

  • Asadu, C. L. A., & Chibuike, G. U. (2015). Contributions of organic matter, clay and silt to the effective CEC of soils of different land use history. Advances in Natural & Applied Science, 9, 110–115.

    Google Scholar 

  • Asadu, C. L. A., Diels, J., & Vanlauwe, B. (1997). A comparison of the contributions of clay, silt, and organic matter to the effective CEC of soils of sub-Saharan Africa. Soil Science, 162, 785–794.

    CAS  Article  Google Scholar 

  • Ashagrie, Y., Zech, W., Guggenberger, G., & Mamo, T. (2007). Soil aggregation and total and particulate organic matter following conversation of native forests to continuous cultivation in Ethiopia. Soil & Tillage Research, 94, 101–108.

    Article  Google Scholar 

  • Baaru, M. W., Mungendi, D. N., Bationo, A., Verchot, L., & Waceke, W. (2007). Soil microbial biomass carbon and nitrogen as influenced by organic and inorganic inputs at Kabete, Kenya. In A. Bationo, B. Waswa, J. Kihara, & J. Kimetu (Eds.), Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities (pp. 827–832). Dordrecht: Springer.

  • Baldock, J. A., & Broos, K. (2011). Soil organic matter. In P. M. Huang, Y. Li, & M. E. Sumner (Eds.), Handbook of soil sciences: resource management and environmental impacts (2nd ed., pp. 1–52). Boca Raton: CRC Press.

    Google Scholar 

  • Bartoli, F., Burtin, G., & Guerif, J. (1992). Influence of organic matter on aggregation of Oxisols rich in gibbsite or in goethite, II. Clay dispersion, aggregate strength and water-stability. Geoderma, 54, 259–274.

    CAS  Article  Google Scholar 

  • Bearden, B. N., & Petersen, L. (2000). Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant & Soil, 218, 173–183.

    CAS  Article  Google Scholar 

  • Beyer, W. N. (2001). Estimating toxic damage to soil ecosystems from soil organic matter profiles. Ecotoxicology, 10, 273–283.

    CAS  Article  Google Scholar 

  • Biancalani, R., Petri, M., Bunning, S. E., Salvatore, M., & Tubiello, F. N. (2012). The use of soil organic carbon as an indicator of soil degradation. Energia, Ambiente e Innovazione, 4-5, 73–78.

    Google Scholar 

  • Blum, S. C., de Oliveira, S. P., de Lacerda, N. B., de Alencar, G. V., Escobar, M. E. O., Mendonca, E. S., & de Oliveira, T. S. (2014). Stratification ratios of soil organic matter in agro-ecosystems in northeastern Brazil. In A. E. Hartemink & K. McSweeney (Eds.), Soil carbon, (chapter 42). Progress in soil science (pp. 427–435). Cham: Springer International Publishing. doi:10.1007/978-3-319-04084-4_42.

  • Borggaard, O. K., Raben-Lange, B., Gimsing, A. L., & Strobel, B. W. (2005). Influence of humic substances on phosphate adsorption by aluminum and iron oxides. Geoderma, 127, 270–279.

    CAS  Article  Google Scholar 

  • Bossuyt, H., Denef, K., Six, J., Frey, S. D., Merckx, R., & Paustian, K. (2001). Influence of microbial populations and residue quality on aggregate stability. Applied Soil Ecology, 16, 195–208.

    Article  Google Scholar 

  • Bot, A., & Benites, J. (2005). The importance of soil organic matter: key to drought-resistant soil and sustained food and production. FAO soils bulletin no. 80. Rome: Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Brookes, P. C. (1995). The use of microbial parameters in monitoring soil pollution by heavy metals. Biology & Fertility of Soils, 19, 269–279.

    CAS  Article  Google Scholar 

  • Cambardella, C. A., & Elliott, E. T. (1993). Carbon and nitrogen distribution in aggregates from cultivated and grassland soils. Soil Science Society of America Journal, 57, 1071–1076.

    CAS  Article  Google Scholar 

  • Capriel, P., Beck, T., Borchert, H., & Härter, P. (1990). Relationship between soil aliphatic fraction extracted with supercritical hexane, soil microbial biomass, and soil aggregate stability. Soil Science Society of American Journal, 54, 415–420.

    CAS  Article  Google Scholar 

  • Cardoso, I. M., & Kuyper, T. W. (2006). Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment, 116, 72–84.

    Article  Google Scholar 

  • Carter, M. R. (1992). Influence of reduced tillage systems on organic matter, microbial biomass, macro-aggregate distribution and structural stability of the surface soil in a humid climate. Soil & Tillage Research, 23, 361–372.

    Article  Google Scholar 

  • Chandra, S., & De, S. K. (1982). Effect of cattle manure on soil erosion by water. Soil Science, 133, 228–231.

    Article  Google Scholar 

  • Chaney K., & Swift, R. S. (1984). The influence of organic matter on aggregate stability in some British soils. European Journal of Soil Science, 35, 223–230.

  • Chaney, K., & Swift, R. S. (1986). Studies on aggregate stability: II. The effect of humic substances on the stability of reformed aggregates. European Journal of Soil Science, 37, 337–343.

    CAS  Article  Google Scholar 

  • Chenu, C., & Guerif, J. (1991). Mechanical strength of clay minerals as influenced by an adsorbed polysaccharide. Soil Science of America Journal, 55, 1076–1080.

    CAS  Article  Google Scholar 

  • Chenu, C., Le Bissonnais, Y., & Arrouays, D. (2000). Organic matter influence on clay wettability and soil aggregate stability. Soil Science Society of America Journal, 64, 1479–1486.

    CAS  Article  Google Scholar 

  • Chibuike, G. U., Agbim, N. N., & Asadu, C. L. A. (2012). Microbial oxidation of elemental sulphur as a means of increasing sulphate availability and combating alkalinity in soils. Nature & Science, 10, 176–181.

    Google Scholar 

  • Conforti, M., Buttafuoco, G., Leone, A. P., Aucelli, P. P. C., Robustelli, G., & Scarciglia, F. (2013). Studying the relationship between waterinduced soil erosion and soil organic matter using Vis–NIR spectroscopy and geomorphological analysis: a case study in southern Italy. Catena, 110, 44–58.

    CAS  Article  Google Scholar 

  • Craswell, E. T., & Lefroy, R. D. B. (2001). The role and function of organic matter in tropical soils. Nutrient Cycling in Agroecosystems, 61, 7–18.

    Article  Google Scholar 

  • David, M. B., Mitchell, M. J., & Nakas, J. P. (1982). Organic and inorganic sulfur constituents of a forest soil and their relationship to microbial activity. Soil Science Society of America Journal, 46, 847–852.

    CAS  Article  Google Scholar 

  • Debicka, M., Kocowicz, A., Weber, J., & Jamroz, E. (2016). Organic matter effects on phosphorus sorption in sandy soils. Archives of Agronomy & Soil Science, 62, 840–855.

    CAS  Article  Google Scholar 

  • Doran, J. W., & Parkin, T. B. (1996). Quantitative indicators of soil quality: a minimum data set. In J. W. Doran & A. J. Jones (Eds.), Biological indicators of soil health (pp. 1–28). Madison: Soil Science Society of America Inc..

    Google Scholar 

  • Doran, J. W., & Safely, M. (1997). Defining and assessing soil health and sustainable productivity. In C. E. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health. Wallingford: CAB Int. Press.

    Google Scholar 

  • Dorioz, J. M., Robert, M., & Chenu, C. (1993). The role of roots, fungi and bacteria on clay particle organization: an experimental approach. Geoderma, 56, 179–194.

    Article  Google Scholar 

  • Dowuona, G. N. N., Adjetey, E. T., Nartey, E. K., Adjadeh, T. A., & Heck, R. (2011). Carbon accumulation and aggregate stability in an Acrisol under different fallow management in Ghana. Journal of Soil Science & Environmental Management, 2, 393–403.

    CAS  Google Scholar 

  • Drake, E. H., & Motto, H. L. (1982). An analysis of the effect of clay and organic matter content on the cation exchange capacity of New Jersey soils. Soil Science, 133, 281–288.

    Article  Google Scholar 

  • Dregne, H. E., & Chou, N. T. (1994). Global desertification dimensions and costs. In H. E. Dregne (Ed.), Degradation and restoration of arid lands. Lubbock: Texas Technical University.

    Google Scholar 

  • Dumat, C., Cheshire, M. V., Fraser, A. R., Shand, C. A., & Staunton, S. (1997). The effect of removal of soil organic matter and iron on the adsorption of radiocaesium. European Journal of Soil Science, 48, 675–683.

    CAS  Article  Google Scholar 

  • Duxbury, J. M., Smith, M. S., & Doran, J. W. (1989). Soil organic matter as a source and a sink of plant nutrients. In D. C. Coleman, J. M. Oades, & G. Uehara (Eds.), Dynamics of soil organic matter in tropical ecosystems (pp. 33–67). Honolulu: University of Hawaii Press.

    Google Scholar 

  • Earl, K. D., Syers, J. K., & McLaughlin, J. R. (1979). Origin of the effect of citrate, tartrate and acetate on phosphate sorption by soils and synthetic gels. Soil Science Society of America Journal, 43, 674–678.

    CAS  Article  Google Scholar 

  • Ekwue, E. I. (1990). Organic-matter effects on soil strength properties. Soil & Tillage Research, 16, 289–297.

    Article  Google Scholar 

  • Elliott, E. T. (1986). Aggregate structure and carbon, nitrogen and phosphorus in native and cultivated soils. SoilScience Society of America Journal, 50, 627–633.

    Article  Google Scholar 

  • Esu, I.E. (1999). Fundamentals of Pedology. Ibadan: Stirling-Horden Publishers (Nig.) Ltd.

  • Eswaran, H., Lal, R., & Reich, P. F. (2001). Land degradation: an overview. In E. M. Bridges, I. D. Hannam, L. R. Oldeman, F. W. T. Pening de Vries, S. J. Scherr, & S. Sompatpanit (Eds.), Responses to land degradation. Proc. 2nd. International conference on land degradation and desertification, Khon Kaen, Thailand. New Delhi: Oxford Press.

    Google Scholar 

  • Fageria, N. K. (2012). Role of soil organic matter in maintaining sustainability of cropping systems. Communications in Soil Science & Plant Analysis, 43, 2063–2113.

    CAS  Article  Google Scholar 

  • Fernandes, E. C. M., Motavalli, P. P., Castilla, C., & Mukurumbira, L. (1997). Management control of soil organic matter dynamics in tropical land-use systems. Geoderma, 79, 49–67.

    CAS  Article  Google Scholar 

  • Franchini, J. C., Crispino, C. C., Souza, R. A., Torres, E., & Hungria, M. (2007). Microbiological parameters as indicators of soil quality under various soil management and crop rotation systems in southern Brazil. Soil & Tillage Research, 92, 18–29.

    Article  Google Scholar 

  • Franzluebbers, A. J. (2002). Soil organic matter stratification ratio as an indicator of soil quality. Soil & Tillage Research, 66, 95–106.

    Article  Google Scholar 

  • Freney, J. R. (1986). Forms and reactions of organic sulfur compounds in soils. In M. A. Tabatabai (Ed.), Sulfur in agriculture (pp. 207–232). Madison: ASA, CSSA and SSSA.

    Google Scholar 

  • Frossard, E., Truong, B., & Jaquin, F. (1986). Effect of organic matter and adsorption and desorption of phosphorus in Oxisol. Agronomie, 6, 503–508.

    Article  Google Scholar 

  • Gal, A., Szegi, T., Simon, B., Szeder, B., Micheli, E., Tombacz, E., Zsolnay, A., & Akagi, J. (2006). Indicators of soil degradation processes on a Chernozem field in Hungary. A paper presented at the 18th World Congress of Soil Science, 9–15 July 2006. Philadelphia, Pennsylvania, USA.

  • Gerard, C. J. (1987). Laboratory experiments on the effects of antecedent moisture and residue application on aggregation of different soils. Soil & Tillage Research, 9, 21–32.

    Article  Google Scholar 

  • Giovannini, G., Lucchesi, S., & Cervelli, S. (1983). Water-repellent substances and aggregate stability in hydrophobic soils. Soil Science, 135, 110–113.

    CAS  Article  Google Scholar 

  • Golchin, A., Clarke, P., Oades, J. M., & Skjemstad, J. O. (1995). The effects of cultivation on the composition of organic-matter and structural stability ofsoils. Australian Journal of Soil Research, 33, 975–993.

    Article  Google Scholar 

  • Goldberg, S., Kapoor, B. S., & Rhoades, J. D. (1990). Effects of aluminum and iron oxides and organic matter on flocculation and dispersion of arid zone soils. Soil Science, 150, 588–593.

    CAS  Article  Google Scholar 

  • Griffiths, B. S., Ritz, K., Bardgett, R. D., Cook, R., Christensen, S., Ekelund, F., Sørensen, S. J., Bååth, E., Bloem, J., de Ruiter, P. C., Dolfing, J., & Nicolardot, B. (2000). Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: an examination of the biodiversity–ecosystem function relationship. Oikos, 90, 279–294.

    Article  Google Scholar 

  • Guerra, A. (1994). The effect of organic matter content on soil erosion in simulated rainfall experiments in W. Sussex, UK. Soil Use & Management, 10, 60–64.

    Article  Google Scholar 

  • Guimaraes, D. V., Gonzaga, M. I. S., da Silva, T. O., da Silva, T. L., da Silva Dias, N., & Matias, M. I. S. (2013). Soil organic matter pools and carbon fractions in soil under different land uses. Soil & Tillage Research, 126, 177–182.

    Article  Google Scholar 

  • Gul, S., Naz, A., Fareed, I., & Irshad, M. (2015). Reducing heavy metals extraction from contaminated soils using organic and inorganic amendments—a review. Polish Journal of Environmental Studies, 24, 1423–1426.

    Article  Google Scholar 

  • Guppy, C. N., Menzies, N. W., Moody, P. W., & Blamey, F. P. C. (2005). Competitive sorption reactions between phosphorus and organic matter in soil: a review. Australian Journal of Soil Research, 43, 189–202.

    CAS  Article  Google Scholar 

  • Harms, B., Dalal, R., & Wang, W. (2004). Soil carbon and soil nitrogen changes after clearing of Mulga vegetation. SuperSoil 2004: 3rd Australian New Zealand Soils Conference, 5–9 December 2004, University of Sydney, Australia. Published on CDROM. Website: www.regional.org.au/au/asssi/.

  • Harter, R. D. (1969). Phosphorus adsorption sites in soils. Soil Science Society of America Proceedings, 33, 630–632.

    CAS  Article  Google Scholar 

  • Haynes, R. J., & Swift, R. S. (1990). Stability of soil aggregates in relation to organic constituents and soil water content. Journal of Soil Science, 41, 73–83.

    CAS  Article  Google Scholar 

  • Hue, N. V. (1991). Effects of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Science, 152, 463–471.

    CAS  Article  Google Scholar 

  • Hunt, J. F., Ohno, T., He, Z., Honeycutt, C. W., & Dail, D. B. (2007). Inhibition of phosphorus sorption to goethite, gibbsite, and kaolin by fresh and decomposed organic matter. Biology & Fertility of Soils, 44, 277–288.

    CAS  Article  Google Scholar 

  • Idowu, O. J. (2003). Relationships between aggregate stability and selected soil properties in humid tropical environments. Communications in Soil Science & Plant Analysis, 36, 695–708.

    Article  CAS  Google Scholar 

  • Igwe, C. A., & Nwokocha, D. (2006). Soil organic matter fractions and micro-aggregation in a Ultisol under cultivation and secondary forest in south-eastern Nigeria. Australian Journal of Soil Research, 44, 627–635.

    Article  Google Scholar 

  • Igwe, C.A., & Obalum, S.E. (2013). Microaggregate stability of tropical soils and its roles on soil erosion hazard prediction. Advances in Agrophysical Research (Chapter 8), Stanisław Grundas (Ed.), ISBN: 978–953–51-1184-9, InTech, doi:10.5772/52473

  • Igwe, C. A., Akamigbo, F. O. R., & Mbagwu, J. S. C. (1995). Physical properties of soils of southeastern Nigeria and the role of some aggregating agents in their stability. Soil Science, 160, 431–441.

    CAS  Article  Google Scholar 

  • Igwe, C. A., Zarei, M., & Stahr, K. (2009). Colloidal stability in some tropical soils of southeastern Nigeria as affected by iron and aluminium oxides. Catena, 77, 232–237.

    CAS  Article  Google Scholar 

  • Islam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Agriculture, Ecosystems & Environment, 79, 9–16.

    Article  Google Scholar 

  • Janzen, H.H., Larney, F.J., & Olsen, B.M. (1992). Soil quality factors of problem soils in Alberta. Proceedings of the 29 th Annual Alberta Soil Science Workshop. pp. 17–28, 19–20 Feb. 1992. Lethbridge, AB.

  • Jastrow, J. D. (1996). Soil aggregate formation and the accrual of particulate and mineral- associated organic matter. Soil Biology & Biochemistry, 28, 665–676.

    CAS  Article  Google Scholar 

  • Jordan, D., Kremer, R. J., Bergfield, W. A., Kim, K. Y., & Cacnio, V. N. (1995). Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biology & Fertility of Soils, 19, 297–302.

    Article  Google Scholar 

  • Kapland, D. I., & Estes, G. O. (1985). Organic matter relationship to soil nutrient status and aluminium toxicity in alfalfa. Agronomy Journal, 77, 735–738.

    Article  Google Scholar 

  • Kay, B. D., & Angers, D. A. (1999). Soil structure. In M. E. Sumner (Ed.), Handbook of soil science (pp. A-229–A-276). Boca Raton: CRC Press LLC.

    Google Scholar 

  • Kemmers, R. H., & Van Delft, S. P. J. (2006). Humus forms as an early warning system for soil degradation. Geophysical Research Abstract, 8, 01123.

    Google Scholar 

  • Krull, E. S., Skjemstad, J. O., & Baldock, J. A. (2004). Functions of soil organic matter and the effect on soil properties. GRDC project no CSO 00029. Residue management, soil organic carbon and crop performance. Glen Osmond: CSIRO Land & Water.

    Google Scholar 

  • Kuwano, B. H., Knob, A., Fagotti, D. S. L., et al. (2014). Soil quality indicators in a Rhodic Kandiudult under different uses in northern Parana, Brazil. Revista Brasileira de Ciência do Solo, 38, 50–59.

    CAS  Article  Google Scholar 

  • Lado, M., Paz, A., & Ben-Hur, M. (2004). Organic matter and aggregate size interactions in saturated hydraulic conductivity. Soil Science Society of America Journal, 68, 234–242.

    CAS  Article  Google Scholar 

  • Lal, R. (1998). Soil erosion impact on agronomic productivity and environment quality. Critical Reviews in Plant Sciences, 17, 319–464.

    Article  Google Scholar 

  • Lal, R. (2002). Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 116, 353–362.

    CAS  Article  Google Scholar 

  • Lal, R. (2009). Challenges and opportunities in soil organic matter research. European Journal of Soil Science, 60, 158–169.

    CAS  Article  Google Scholar 

  • Lal, R. (2015). Restoring soil quality to mitigate soil degradation. Sustainability, 7, 5875–5895.

    CAS  Article  Google Scholar 

  • Lal, R., & Stewart, B. A. (1990). Soil degradation. New York: Springer-Verlag.

    Google Scholar 

  • Lawal, H. M., Ogunwole, J. O., & Uyovbisere, E. O. (2012). Reciprocal relationships between aggregate stability and organic carbon characteristics in a forested ecosystem of northern Nigeria. Tropical & Subtropical Agroecosystems, 15, 481–488.

    Google Scholar 

  • Le Bissonnais, Y. (1996). Aggregate stability and assessment of soil crustability and erodibility: I. Theory and methodology. European Journal of Soil Science, 47, 425–437.

    Article  Google Scholar 

  • Le Bissonnais, Y., & Arrouays, D. (1997). Aggregate stability and assessment of soil crustability and erodibility, II. Application to humic loamy soil with various organic carbon contents. European Journal of Soil Science, 48, 39–48.

    Article  Google Scholar 

  • Lefroy, R.D.B., Blair, G.J., & Conteh, A. (1995). Chemical fractionation of soil organic matter and measurement of the breakdown rate of residues. In R. D. B. Lefroy, G. J. Blair, & E. T. Craswell (Eds.), Soil Organic Matter Management for Sustainable Agriculture (pp. 149–158). A workshop held in Ubon, Thailand, 24–26 August 1994. ACIAR Proceedings No. 56. Canberra: Australian Centre for International Agricultural Research.

  • Lickacz, J., & Penny, D. (2001). Soil organic matter. Alberta Department of Agriculture and Rural Development. Available at: http://www.byronseeds.net/pdfs/resources/Soil%20Organic%20Matter.pdf. Accessed 14/02/2015.

  • Logah, V., Safo, E. Y., Quansah, C., & Danso, I. (2010). Soil microbial biomass carbon, nitrogen and phosphorus dynamics under different amendments and cropping systems in the semi-deciduous forest zone of Ghana. West African Journal of Applied Ecology, 17, 121–133.

    Google Scholar 

  • Lynch, J. M., & Bragg, E. (1985). Microorganisms and soil aggregate stability. Advances in Soil Science, 2, 134–170.

    Google Scholar 

  • Martens, D. A., & Frankenberger Jr., W. T. (1992). Decomposition of bacterial polymers in soil and their influence on soil structure. Biology & Fertility of Soils, 13, 65–73.

    CAS  Article  Google Scholar 

  • Martinez-Salgado, M. M., Gutiérrez-Romero, V., Jannsens, M., & Ortega-Blu, R. (2010). Biological soil quality indicators: a review. In A. Mendez-Vilas (Ed.), Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (pp. 319–328). FORMATEX.

  • Mbagwu, J. S. C. (1989). Influence of cattle-feedlot manure on aggregate stability, plastic limit and water relations of three soils in north-central Italy. Biological Wastes, 28, 257–269.

    Article  Google Scholar 

  • Mbagwu J.S.C. (2003a). Aggregate stability and soil degradation in the tropics. Paper presented at the 20th Anniversary of College on Soil Physics, 3–21 March 2003. Trieste: The Abdus Salam International Centre for Theoretical Physics. Available at: http://users.ictp.it/~pub_off/lectures/lns018/22Mbagwu1.pdf. Accessed 31/01/2016.

  • Mbagwu, J.S.C. (2003b). Environmental control of soil structure in Mediterranean soils. Paper presented at the 20th Anniversary of College on Soil Physics, 3–21 March 2003. The Abdus Salam International Centre for Theoretical Physics, Trieste. http://users.ictp.trieste.it/~pub_off/lectures/lns018/23Mgagwu2.pdf. Accessed 31/01/2016.

  • Mbagwu, J. S. C., & Bazzoffi, P. (1988). Stability of micro aggregates as influenced by antecedent moisture content, organic waste amendment, and wetting and drying cycles. Catena, 15, 565–576.

    Article  Google Scholar 

  • Mbagwu, J. S. C., & Piccolo, A. (1989). Changes in soil aggregate stability induced by amendment with humic substances. Soil Technology, 2, 49–57.

    Article  Google Scholar 

  • Mbagwu, J. S. C., & Schwertmann, U. (2006). Some factors affecting clay dispersion and aggregate stability in selected soils of Nigeria. International Agrophysics, 20, 23–30.

    CAS  Google Scholar 

  • Mbagwu, J. S. C., Piccolo, A., & Spallacci, P. (1991). Effects of field application of organic wastes from different sources on chemical, rheological and structural practices of some Italian surface soil. Bioresource Technology, 37, 71–78.

    CAS  Article  Google Scholar 

  • Mbagwu, J. S. C., Piccolo, A., & Mbila, M. O. (1993). Water-stability of aggregates of some tropical soils treated with humic substances. Pédologie, 43, 269–284.

    CAS  Google Scholar 

  • Moghimi, A. H., Hamdan, J., Shamshuddin, J., Samsuri, A. W., & Abtahi, A. (2012). Mineralogy and aggregate stability of soils in the arid region of southeastern Iran. African Journal of Agricultural Research, 7, 1639–1649.

    Article  Google Scholar 

  • Mukherjee, M., & Lal, R. (2015). Short-term effects of cover cropping on the quality of a Typic Argiaquolls in Central Ohio. Catena, 131, 125–129.

    Article  Google Scholar 

  • Myers, N. (1993). Gaia: an atlas of planet management. Garden City: Anchor/Doubleday.

    Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., & Renella, G. (2003). Microbial diversity and soil functions. European Journal of Soil Science, 54, 655–670.

    Article  Google Scholar 

  • Nciizah, A. D., & Wakindiki, I. I. C. (2015). Physical indicators of soil erosion, aggregate stability and erodibility. Archives of Agronomy & Soil Science, 61, 827–842.

    Article  Google Scholar 

  • Oades, J. M. (1984). Soil organic matter and structural stability: mechanisms and implications for management. Plant & Soil, 76, 319–337.

    CAS  Article  Google Scholar 

  • Obalum, S. E., Okpara, I. M., Obi, M. E., & Wakatsuki, T. (2011). Short-term effects of tillage-mulch practices under sorghum and soybean on organic carbon and eutrophic status of a degraded Ultisol in southeastern Nigeria. Tropical & Subtropical Agroecosystems, 14, 393–403.

    Google Scholar 

  • Obalum, S. E., Buri, M. M., Nwite, J. C., Hermansah, W. Y., Igwe, C. A., & Wakatsuki, T. (2012a). Soil degradation-induced decline in productivity of sub-Saharan African soils: the prospects of looking downwards the lowlands with the sawah ecotechnology. Applied & Environmental Soil Science, 2012, Article ID 673926 . doi:10.1155/2012/673926.10 pp.

    Article  Google Scholar 

  • Obalum, S. E., Nwite, J. C., Watanabe, Y., Igwe, C. A., & Wakatsuki, T. (2012b). Comparative topsoil characterization of sawah rice fields in selected inland valleys around Bida, north-central Nigeria: physicochemical properties and fertility status. Tropical Agriculture & Development, 56, 39–48.

    CAS  Google Scholar 

  • Obalum, S. E., Watanabe, Y., Igwe, C. A., Obi, M. E., & Wakatsuki, T. (2013). Improving on the prediction of cation exchange capacity for highly weathered and structurally contrasting tropical soils from their fine-earth fractions. Communications in Soil Science & Plant Analysis, 44, 1831–1848.

    CAS  Article  Google Scholar 

  • Obi, M. E., & Ebo, P. O. (1995). The effects of organic and inorganic amendments on soil physical properties and maize production in a severely degraded sandy soil in southern Nigeria. Bioresource Technology, 51, 117–123.

    CAS  Article  Google Scholar 

  • Oldeman, L. R. (1994). The global extent of land degradation. In D. J. Greenland & I. Szabolcs (Eds.), Land resilience and sustainable land use (pp. 99–118). Wallingford: CABI.

    Google Scholar 

  • Olson, K. R., Al-Kaisi, M., Lal, R., & Cihacek, L. (2016). Impact of soil erosion on soil organic carbon stocks. Journal of Soil and Water Conservation, 71, 61A–67A.

    Article  Google Scholar 

  • Oorts, K. B., Vanlauwe, B., & Merckx, R. (2003). Cation exchange capacities of soil organic matter fractions in a ferric Lixisol with different organic matter inputs. Agriculture, Ecosystems & Environment, 100, 161–171.

    CAS  Article  Google Scholar 

  • Opara, C. C. (2009). Soil microaggregates stability under different land use types in southeastern Nigeria. Catena, 79, 103–112.

    CAS  Article  Google Scholar 

  • Öztaş, T. (2002). Assessment of soil quality. A paper presented at the International Conference on Sustainable Land Use and Management. 10–13 June, Çanakkale-Turkey.

  • Paul, E. A., & Voroney, R. P. (1980). Nutrient and energy flows through soil microbial biomass. In D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, & J. H. Slater (Eds.), Contemporary microbial ecology (pp. 215–237). London: Academic Press.

    Google Scholar 

  • Perie, C., & Quimet, R. (2008). Organic carbon, organic matter and bulk density relationships in boreal forest soils. Canadian Journal of Soil Science, 88, 315–325.

    CAS  Article  Google Scholar 

  • Piccolo, A., & Mbagwu, J. S. C. (1990). Effects of different organic waste amendments on soil microaggregate stability and molecular sizes of humic substances. Plant & Soil, 123, 27–37.

    CAS  Article  Google Scholar 

  • Piccolo, A., & Mbagwu, J. S. C. (1994). Humic substances and surfactants effects on the stability of two tropical soils. Soil Science Society of America Journal, 58, 950–955.

    CAS  Article  Google Scholar 

  • Piccolo, A., & Mbagwu, J. S. C. (1997). Exogenous humic substances as conditioners for the rehabilitation of degraded soils. Agro-Food-Industry Hi-Tech, 8, 2–4.

    CAS  Google Scholar 

  • Piccolo, A., & Mbagwu, J. S. C. (1999). Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Science Society of America Journal, 63, 1801–1810.

    CAS  Article  Google Scholar 

  • Piccolo, A., Pietramellara, G., & Mbagwu, J. S. C. (1996). Effects of coal derived humic substances on water retention and structural stability of Mediterranean soils. Soil Use & Management, 12, 209–213.

    Article  Google Scholar 

  • Piccolo, A., Conte, P., Spaccini, R., & Mbagwu, J. S. C. (2005). Influence of land use on the characteristics of humic substances in some tropical soils of Nigeria. European Journal of Soil Science, 56, 343–352.

    CAS  Article  Google Scholar 

  • Pikul Jr., J. L., Chilom, G., Rice, J., Eynard, A., Schumacher, T. E., Nichols, K., Johnson, J. M. F., Wright, S., Caesar, T., & Ellsbury, M. (2009). Organic matter and water stability of field aggregates affected by tillage in South Dakota. Soil Science Society of America Journal, 73, 197–206.

    CAS  Article  Google Scholar 

  • Pimentel, D. (2006). Soil erosion: a food and environmental threat. Environment, Development & Sustainability, 8, 119–137.

    Article  Google Scholar 

  • Plank, O.C. (2001). Organic matter in georgia soils. Bulletin 1196 of the Cooperative Extension Service, the University of Georgia College of Agricultural and Environmental Sciences. Issued in furtherance of Cooperative Extension Work Acts: the University of Georgia and Ft. Valley State University, the U.S.D.A. and countries of the state cooperating.

  • Puget, P., Chenu, C., & Balesdent, J. (1995). Total and young organic matter distributions in aggregates of silty cultivated soils. European Journal of Soil Science, 46, 449–459.

    Article  Google Scholar 

  • Reeves, D. W. (1997). The role of soil organic matter in maintaining soil quality in continuous cropping systems. Soils & Tillage Research, 43, 131–167.

    Article  Google Scholar 

  • Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: revised universal soil loss equation. Journal of Soil & Water Conservation, 46, 30–33.

    Google Scholar 

  • Römkens, M. J. M., Roth, C. B., & Nelson, D. W. (1977). Erodibility of selected clay subsoils in relation to physical and chemical properties. Soil Science Society of America Journal, 41, 954–960.

    Article  Google Scholar 

  • Sahrawat, K. L. (2004). Organic matter accumulation in submerged soils. Advances in Agronomy, 81, 169–201.

    CAS  Article  Google Scholar 

  • Shujie, M., Yunfa, Q., & Lianren, Z. (2009). Aggregation stability and microbial activity of China's black soils under different long-term fertilisation regimes. New Zealand Journal of Agricultural Research, 52, 57–67.

    Article  Google Scholar 

  • Sims, G. K. (1990). Biological degradation of soil. In R. Lal & B. A. Stewart (Eds.), Advances in soil science (11): soil degradation (pp. 289–330). New York: Springer-Verlag.

    Chapter  Google Scholar 

  • Six, J., Paustian, K., Elliott, E. T., & Combrick, C. (2000). Soil structure and soil organic matter. I. Distribution of aggregate size classes and aggregated associated carbon. Soil Science Society of America Journal, 64, 681–689.

    CAS  Article  Google Scholar 

  • Smith, J. L., & Paul, E. A. (1990). The significance of soil microbial biomass estimations. In J. M. Bollag & G. Stotzky (Eds.), Soil biochemistry (Vol. 6, pp. 357–396). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Soil Science Society of America. (2001). Glossary of soil science terms. Madison: ASA, CSSA and SSSA.

    Google Scholar 

  • Spaccini, R., Zena, A., Igwe, C. A., Mbagwu, J. S. C., & Piccolo, A. (2001). Carbohydrates in water-stable aggregates and particle size fraction of forested and cultivated soils in two contrasting tropical ecosystems. Biogeochemistry, 53, 1–22.

    CAS  Article  Google Scholar 

  • Spaccini, R., Piccolo, A., Mbagwu, J. S. C., Zena, T. A., & Igwe, C. A. (2002). Influence of the addition of organic residues on carbohydrate content and structural stability of some highland soils in Ethiopia. Soil Use & Management, 18, 404–411.

    Article  Google Scholar 

  • Stevenson, F. J. (1982). Humus chemistry: genesis, composition, reactions. New York: John Wiley & Sons.

    Google Scholar 

  • Stevenson, F. J. (1991). Organic matter-micronutrient reactions in soil. In R. R. Mortvedt (Ed.), Micronutrients in Agriculture (2nd ed., pp. 145–186). Madison: SSSA.

    Google Scholar 

  • Strom, L., Owen, A. G., Godbold, D. L., & Jones, D. L. (2002). Organic acid mediated P mobilization in the rhizosphere and uptake by maize roots. Soil Biology & Biochemistry, 34, 703–710.

    CAS  Article  Google Scholar 

  • Sullivan, P. (2004). Sustainable soil management. http://syekhfanismd.lecture.ub.ac.id/files/2012/11/Sustainable-Soil-Management.pdf. Accessed 31/01/2016.

  • Sung, C. T. B. (2012). Aggregate stability of tropical soils in relation to their organic matter constituents and other soil properties. Pertanika Journal of Tropical Agricultural Science, 35, 135–148.

    Google Scholar 

  • Tefera, B., Ayele, G., Atnafe, Y., Jabbar, M. A., & Dubale, P. (2002). Nature and causes of land degradation in the Oromiya region: a review. Socio-economics and policy research working paper 36. Nairobi: International Livestock Research Institute (ILRI).

    Google Scholar 

  • Tisdall, J. M. (1991). Fungal hyphae and structural stability of soil. Australian Journal of Soil Research, 29, 729–743.

    Article  Google Scholar 

  • Tisdall, J. M., & Oades, J. M. (1979). Stabilization of soil aggregates by the root systems of ryegrass. Australian Journal of Soil Research, 17, 429–441.

    Article  Google Scholar 

  • Tisdall, J. M., & Oades, J. M. (1982). Organic matter and water-stable aggregates in soils. Journal of Soil Science, 33, 141–163.

    CAS  Article  Google Scholar 

  • Trasar-Cepeda, C., Leirós, C., Gil-Sotres, F., & Seoane, S. (1998). Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biology & Fertility of Soils, 26, 100–106.

    CAS  Article  Google Scholar 

  • Turpault, M. P., Bonnaud, P., Fichter, J., Ranger, J., & Dambrine, E. (1996). Distribution of cation exchange capacity between organic matter and mineral fractions in acid forest soils (Vosges mountains, France). European Journal of Soil Science, 47, 545–556.

    CAS  Article  Google Scholar 

  • USDA-NRCS. (1996). Soil quality indicators: organic matter. Soil Quality Information Sheet. Prepared by the National Soil Survey Center in cooperation with the National Soil Tilth Laboratory, Agricultural Research Service, USDA.

  • van Veen, J. A., & Kuikman, P. J. (1990). Soil structural aspects of decomposition of organic matter by microorganisms. Biogeochemistry, 11, 213–223.

    Article  Google Scholar 

  • Violante, A., & Gianfreda, L. (1993). Competition in adsorption between phosphate and oxalate on an aluminum hydroxide montmorillonite complex. Soil Science Society of America Journal, 57, 1235–1241.

    CAS  Article  Google Scholar 

  • Visser, S. A., & Caillier, M. (1988). Observations on the dispersion and aggregation of clays by humic substances, I. Dispersive effects of humic acids. Geoderma, 42, 331–337.

    CAS  Article  Google Scholar 

  • Visser, S., & Parkison, D. (1992). Soil biological criteria as indicators of soil quality: soil microorganisms. American Journal of Alternative Agriculture, 7, 33–37.

    Article  Google Scholar 

  • Wainwright, M., Nevall, W., & Grayston, S. J. (1986). Effects of organic matter on sulphur oxidation in soil and influence of sulphur oxidation on soil nitrification. Plant & Soil, 96, 369–376.

    CAS  Article  Google Scholar 

  • Weil, R. R., & Magdoff, F. (2004). Significance of soil organic matter to soil quality and health. In R. R. Weil & F. Magdoff (Eds.), Soil organic matter in sustainable agriculture (pp. 1–43). Florida: CRC Press.

    Google Scholar 

  • Wiesmeier, M., Steffens, M., Mueller, C. W., Kolbl, A., Reszkowska, A., Peth, S., Horn, R., & Kogel-Knabner, I. (2012). Aggregate stability and physical protection of soil organic carbon in semi-arid steppe soils. European Journal of Soil Science, 63, 22–31.

    CAS  Article  Google Scholar 

  • Wischmeier, W. H., & Mannering, J. H. (1969). Relation of soil properties to its erodibility. Soil Science Society of America Proceedings, 33, 131–137.

    Article  Google Scholar 

  • Wolf, B., & Snyder, G. H. (2003). Sustainable soils: the place of organic matter in sustaining soils and their productivity. New York: Food Products Press of the Haworth Press.

    Google Scholar 

  • Wuddivira, M. N., & Camps-Roach, G. (2007). Effects of organic matter and calcium on soil structural stability. European Journal of Soil Science, 58, 722–727.

    Article  Google Scholar 

  • Zhang, B., & Horn, R. (2001). Mechanisms of aggregate stabilization in Ultisols from subtropical China. Geoderma, 99, 123–145.

    CAS  Article  Google Scholar 

  • Zhang, X., Wang, H., He, L., Lu, K., Sarmah, A., Li, J., Bolan, N. S., Pei, J., & Huang, H. (2013). Using biochar for remediation of soils contaminated with heavy metals and organic pollutants. Environmental Science and Pollution Research, 20, 8472–8483.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The first draft of this paper was written during March–May 2015 whilst the first author was on a TWAS-DFG Cooperation Visit for postdoctoral researchers from sub-Saharan Africa at the Department of Soil Science, Faculty of Ecological Agriculture, University of Kassel, Witzenhausen, Germany. The support of TWAS-DFG for the fellowship is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.E. Obalum.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Obalum, S., Chibuike, G., Peth, S. et al. Soil organic matter as sole indicator of soil degradation. Environ Monit Assess 189, 176 (2017). https://doi.org/10.1007/s10661-017-5881-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5881-y

Keywords

  • Aggregate stability
  • Land degradation
  • Labile component
  • Organic carbon
  • Soil quality index