Skip to main content

Advertisement

Log in

Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Several spatial forest disturbance datasets exist for the conterminous USA. The major problem with forest disturbance mapping is that variability between map products leads to uncertainty regarding the actual rate of disturbance. In this article, harmonized maps were produced from multiple data sources (i.e., Global Forest Change, LANDFIRE Vegetation Disturbance, National Land Cover Database, Vegetation Change Tracker, and Web-Enabled Landsat Data). The harmonization process involved fitting common class ontologies and determining spatial congruency to produce forest disturbance maps for four time intervals (1986–1992, 1992–2001, 2001–2006, and 2006–2011). Pixels mapped as disturbed for two or more datasets were labeled as disturbed in the harmonized maps. The primary advantage gained by harmonization was improvement in commission error rates relative to the individual disturbance products. Disturbance omission errors were high for both harmonized and individual forest disturbance maps due to underlying limitations in mapping subtle disturbances with Landsat classification algorithms. To enhance the value of the harmonized disturbance products, we used fire perimeter maps to add information on the cause of disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Cohen, W. B., Spies, T. A., Alig, R. J., et al. (2002). Characterizing 23 years (1972-95) of stand replacement disturbance in Western Oregon forests with Landsat imagery. Ecosystems, 5, 122–137. doi:10.1007/s10021-001-0060-X.

    Article  Google Scholar 

  • Cohen, W. B., Yang, Z., & Kennedy, R. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—tools for calibration and validation. Remote Sensing of Environment, 114, 2911–2924. doi:10.1016/j.rse.2010.07.010.

    Article  Google Scholar 

  • Cohen, W. B., Yang, Z., Stehman, S. V., et al. (2016). Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline. Forest Ecology and Management, 360, 242–252. doi:10.1016/j.foreco.2015.10.042.

    Article  Google Scholar 

  • Drobne, S., & Lisec, A. (2009). Multi-attribute decision analysis in GIS: weighted linear combination and ordered weighted averaging. Informatica, 4, 28.

    Google Scholar 

  • Fensholt, R., Rasmussen, K., Nielsen, T. T., & Mbow, C. (2009). Evaluation of earth observation based long term vegetation trends—intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of Environment, 113, 1886–1898. doi:10.1016/j.rse.2009.04.004.

    Article  Google Scholar 

  • Finco, M., Quayle, B., Zhang, Y., et al. (2012). Monitoring trends and burn severity (MTBS): monitoring wildfire activity for the past quarter century using Landsat data. In: Moving from Status to Trends: Forest Inventory and Analysis (FIA) Symposium. pp 222–228.

  • Friedl, M. A., Gray, J. M., Melaas, E. K., et al. (2014). A tale of two springs: using recent climate anomalies to characterize the sensitivity of temperate forest phenology to climate change. Environmental Research Letters, 9, 54006. doi:10.1088/1748-9326/9/5/054006.

    Article  Google Scholar 

  • Fry, J. A., Coan, M. J., Homer, C. G., et al. (2009). Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit Product. U.S. Geological Survey, Open File Report 2008-1379.

  • Goetz, S. J., Fiske, G. J., & Bunn, A. G. (2006). Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sensing of Environment, 101, 352–365. doi:10.1016/j.rse.2006.01.011.

    Article  Google Scholar 

  • Goward, S. N., Masek, J. G., Cohen, W., et al. (2008). Forest disturbance and North American carbon flux. EOS, Transactions, American Geophysical Union, 89(11), 105–116.

    Article  Google Scholar 

  • Hansen, M. C., Egorov, A., Potapov, P. V., et al. (2014). Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). Remote Sensing of Environment, 140, 466–484. doi:10.1016/j.rse.2013.08.014.

  • Hansen, M. C., Egorov, A., Roy, D. P., et al. (2011). Continuous fields of land cover for the conterminous United States using Landsat data: first results from the Web-Enabled Landsat Data (WELD) project. Remote Sens Letters, 2, 279–288. doi:10.1080/01431161.2010.519002.

  • Hansen, M. C., Potapov, P. V., Moore, R., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342, 850–853. doi:10.1126/science.1244693.

    Article  CAS  Google Scholar 

  • Hansen, M. C., Stehman, S. V., & Potapov, P. V. (2010). Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences, 107, 8650–8655. doi:10.1073/pnas.0912668107.

    Article  CAS  Google Scholar 

  • Homer, C., Huang, C., Yang, L., et al. (2004). Development of a 2001 national land-cover database for the United States. Photogrammetric Engineering and Remote Sensing, 70, 829–840.

    Article  Google Scholar 

  • Houghton, R. A. (1999). The U.S. carbon budget: contributions from land-use change. Science, 285, 574–578. doi:10.1126/science.285.5427.574.

    Article  CAS  Google Scholar 

  • Huang, C., Goward, S. N., Masek, J. G., et al. (2010). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114, 183–198. doi:10.1016/j.rse.2009.08.017.

    Article  Google Scholar 

  • Jansen, L. J. M. (2006). Harmonization of land use class sets to facilitate compatibility and comparability of data across space and time. J Land Use Sci, 1, 127–156. doi:10.1080/17474230601079241.

    Article  Google Scholar 

  • Jin, S., Yang, L., Danielson, P., et al. (2013). A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sensing of Environment, 132, 159–175. doi:10.1016/j.rse.2013.01.012.

    Article  Google Scholar 

  • Jung, M., Henkel, K., Herold, M., & Churkina, G. (2006). Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101, 534–553. doi:10.1016/j.rse.2006.01.020.

    Article  Google Scholar 

  • Kennedy, R. E., Yang, Z., & Cohen, W. B. (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—temporal segmentation algorithms. Remote Sensing of Environment, 114, 2897–2910. doi:10.1016/j.rse.2010.07.008.

    Article  Google Scholar 

  • Kennedy, R. E., Yang, Z., Cohen, W. B., et al. (2012). Spatial and temporal patterns of forest disturbance and regrowth within the area of the northwest forest plan. Remote Sensing of Environment, 122, 117–133. doi:10.1016/j.rse.2011.09.024.

    Article  Google Scholar 

  • Liski, J., Ilvesniemi, H., Mäkelä, A., & Starr, M. (1998). Model analysis of the effects of soil age, fires and harvesting on the carbon storage of boreal forest soils. European Journal of Soil Science, 49, 407–416. doi:10.1046/j.1365-2389.1998.4930407.x.

    Article  Google Scholar 

  • Loveland, T. R., Sohl, T. L., Stehman, S. V., et al. (2002). A strategy for estimating the rates of recent United States land cover changes. Photogrammetric Engineering and Remote Sensing, 68, 1091–1099.

    Google Scholar 

  • Lunetta RS, Elvidge CD (1999) Remote sensing change detection: environmental monitoring methods and applications. Taylor & Francis Ltd

  • Lunetta, R. S., Knight, J. F., Ediriwickrema, J., et al. (2006). Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sensing of Environment, 105, 142–154. doi:10.1016/j.rse.2006.06.018.

    Article  Google Scholar 

  • Masek, J. G., Goward, S. N., Kennedy, R. E., et al. (2013). United States forest disturbance trends observed using Landsat time series. Ecosystems, 16, 1087–1104. doi:10.1007/s10021-013-9669-9.

    Article  Google Scholar 

  • Moisen, G. G., & Frescino, T. S. (2002). Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling, 157, 209–225.

    Article  Google Scholar 

  • Nelson, K. J., Connot, J., Peterson, B., & Martin, C. (2013). The Landfire refresh strategy: updating the national dataset. Fire Ecology, 9, 80–101. doi:10.4996/fireecology.0902080.

  • Olander, L. P., Gibbs, H. K., Steininger, M., et al. (2008). Reference scenarios for deforestation and forest degradation in support of REDD: a review of data and methods. Environmental Research Letters, 3, 25011.

    Article  Google Scholar 

  • Olofsson, P., Foody, G. M., Herold, M., et al. (2014). Good practices for estimating area and assessing accuracy of land change. Remote Sensing of Environment, 148, 42–57. doi:10.1016/j.rse.2014.02.015.

    Article  Google Scholar 

  • Omernik, J. M. (1987). Ecoregions of the conterminous United States. Annals of the Association of American Geographers, 77, 118–125. doi:10.1111/j.1467-8306.1987.tb00149.x.

  • Oswalt, S. N., Smith, W. B., Miles, P. D., et al. (2014). Forest resources of the United States, 2012; A technical document supporting the Forest Service 2015 update of the RPA Assessment: US Department of Agriculture, Forest Service, Washington Office. General Technical Report GTR–WO–91, p.218.

  • Pérez-Hoyos, A., García-Haro, F. J., & San-Miguel-Ayanz, J. (2012). A methodology to generate a synergetic land-cover map by fusion of different land-cover products. International Journal of Applied Earth Observation and Geoinformation, 19, 72–87. doi:10.1016/j.jag.2012.04.011.

  • Rollins, M. G. (2009). LANDFIRE: a nationally consistent vegetation, wildland fire, and fuel assessment. International Journal of Wildland Fire, 18, 235. doi:10.1071/WF08088.

    Article  Google Scholar 

  • Roy, D. P., Ju, J., Kline, K., et al. (2010). Web-Enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sensing of Environment, 114, 35–49. doi:10.1016/j.rse.2009.08.011.

    Article  Google Scholar 

  • Särndal CE, Swensson B, Wretman J (1992) Model assisted survey sampling. Springer Science & Business Media

  • SAS/STAT Version 9.3. Statistical Analysis Software (SAS), Cary, North Carolina, USA

  • Schepaschenko, D., See, L., Lesiv, M., et al. (2015). Development of a global hybrid forest mask through the synergy of remote sensing, crowdsourcing and FAO statistics. Remote Sensing of Environment, 162, 208–220. doi:10.1016/j.rse.2015.02.011.

    Article  Google Scholar 

  • See, L. M., & Fritz, S. (2006). A method to compare and improve land cover datasets: application to the GLC-2000 and MODIS land cover products. IEEE Transactions on Geoscience and Remote Sensing, 44, 1740–1746. doi:10.1109/TGRS.2006.874750.

    Article  Google Scholar 

  • Song, X. P., Huang, C., Feng, M., et al. (2014). Integrating global land cover products for improved forest cover characterization: an application in North America. International Journal of Digital Earth, 7, 709–724. doi:10.1080/17538947.2013.856959.

  • Soulard, C. E., Acevedo, W., Auch, R. F., et al. (2014). Land Cover Trends Dataset, 1973–2000. US Geological Survey doi. doi:10.3133/ds844.

    Google Scholar 

  • Vogelmann, J. E., Howard, S. M., Yang, L., et al. (2001). Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat thematic mapper data and ancillary sources. Photogrammetric Engineering and Remote Sensing, 67, 650–662.

    Google Scholar 

  • Vogelmann, J. E., Kost, J. R., Tolk, B., et al. (2011). Monitoring landscape change for LANDFIRE using multi-temporal satellite imagery and ancillary data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4, 252–264.

  • Wickham, J. D., Stehman, S. V., Gass, L., et al. (2013). Accuracy assessment of NLCD 2006 land cover and impervious surface. Remote Sensing of Environment, 130, 294–304. doi:10.1016/j.rse.2012.12.001.

    Article  Google Scholar 

  • Woodcock, C. E., Allen, R., Anderson, M., et al. (2008). Free access to Landsat imagery. Science, 320, 1011–1011. doi:10.1126/science.320.5879.1011a.

    Article  CAS  Google Scholar 

  • Woodcock, C. E., Macomber, S. A., Pax-Lenney, M., & Cohen, W. B. (2001). Monitoring large areas for forest change using Landsat: generalization across space, time and Landsat sensors. Remote Sensing of Environment, 78, 194–203.

    Article  Google Scholar 

  • Wulder, M. A., Masek, J. G., Cohen, W. B., et al. (2012). Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment, 122, 2–10. doi:10.1016/j.rse.2012.01.010.

    Article  Google Scholar 

  • Xian, G., Homer, C., & Fry, J. (2009). Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment, 113, 1133–1147. doi:10.1016/j.rse.2009.02.004.

    Article  Google Scholar 

  • Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152–171. doi:10.1016/j.rse.2014.01.011.

    Article  Google Scholar 

  • Zimmerman, P. L., Housman, I. W., Perry, C. H., et al. (2013). An accuracy assessment of forest disturbance mapping in the western Great Lakes. Remote Sensing of Environment, 128, 176–185.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the USGS Land Change Science and USGS Climate Research and Development programs and Cooperative Agreement G12AC20221 provided by the USGS to SUNY ESF. We would also like to thank external peer reviewers for their suggestions. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Soulard.

Electronic supplementary material

ESM 1

Digital forest disturbance map data for 1986–1992, 1992–2001, 2001–2006, and 2006–2011 are provided online through the journal. Compressed Erdas Imagine (IMG) files have a 30 m pixel resolution and the projection is set to Albers Equal-Area Conic, North American Datum of 1983. For each time interval, pixels are either coded 0 (not disturbed), 1 (forest harvest/other), or 2 (forest fire). (ZIP 355473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soulard, C.E., Acevedo, W., Cohen, W.B. et al. Harmonization of forest disturbance datasets of the conterminous USA from 1986 to 2011. Environ Monit Assess 189, 170 (2017). https://doi.org/10.1007/s10661-017-5879-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5879-5

Keywords

Navigation