Concentrations and origin of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in sediments of western Spitsbergen fjords (Kongsfjorden, Hornsund, and Adventfjorden)

  • Anna PouchEmail author
  • Agata Zaborska
  • Ksenia Pazdro


Contaminant profiles in sediment cores represent valuable natural archives of environmental contamination, by which contaminant sources and historical changes in contaminant input and cycling may be recognized. In the present study, we discuss the sedimentary profiles and historical trends of organic contaminants — polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) — in three fjords of the Svalbard archipelago differing in environmental conditions and anthropogenic impact. The obtained results revealed no significant differences between the fjords Hornsund and Kongsfjorden, in the average levels of the analyzed contaminants. Levels ranging from 0.05 to 1.47 ng/g d.w. for ∑7 PCBs and from 37.3 to 1973 ng/g d.w. for ∑12 PAHs were measured. The observed spatial and temporal differences in contaminant levels are rather related to local variations in the fjords associated with the location of sampling stations. Higher concentrations of the ∑7 PCBs exceeding 1.00 ng/g d.w. were measured in sediment cores collected in the inner parts of both fjords, which remain under the influence of melting glacier outflows. Important concentrations of these contaminants were noticed in layers deposited recently, suggesting intensive supply of these substances from secondary sources. The observed levels are generally low and well below known established no effect levels. Only the concentration of fluoranthene exceeded the threshold effect level at several sampling stations. Moreover, fluoranthene concentrations in almost all Adventfjorden sediment layer samples were above probable effect levels, which can indicate a risk of adverse effects in exposed benthic organisms. The fluoranthene/pyrene and phenthrene/anthracene ratios, which are used for identification of hydrocarbon sources, suggest a dominance of PAHs of pyrolytic genesis in Kongsfjorden and Hornsund. In Adventfjorden, hydrocarbons of petrogenic origin were predominant. However, other sources like coal dust from stores on land are also possible at this location.


Polychlorinated biphenyls (PCBs) Polycyclic aromatic hydrocarbon (PAHs) Contamination Sediments Arctic Spitsbergen 



This study was funded by the project of Ministry of Science and Higher Education (nr IPY/285/2006). Some sediment cores were sampled within the GAME (nr DET-2012/04/A/NZ8/00661) and DWARF (nr Pol-Nor/201992/93/2014) projects. The work was also partially financed from the funds of the Leading National Research Centre (KNOW), received by the Centre for Polar Studies for the period 2014–2018, and was supported by the Institute of Oceanology of the Polish Academy of Sciences under statutory activity task no. II. 2.

Supplementary material

10661_2017_5858_MOESM1_ESM.docx (33 kb)
ESM 1 (DOCX 32 kb)
10661_2017_5858_MOESM2_ESM.docx (42 kb)
ESM 2 (DOCX 42 kb)


  1. AMAP (2004). AMAP Assessment 2002: Persistent Organic Pollutants in the Arctic. 2004, Arctic Monitoring and Assessment Programme, Oslo, Norway, 309 p.Google Scholar
  2. AMAP (2009). Arctic Pollution 2009: Persistent Organic Pollutants, Radioactivity, Human HealthGoogle Scholar
  3. Ardini, F., Bazzano, A., Rivaro, P., et al. (2016). Rend. Lincei: Fis. Acc. doi: 10.1007/s12210-016-0524-8.Google Scholar
  4. Behar, F., Leblond, C., & Saint-Paul, P. (1989). Quantitative analysis of pyrolysis effluents in an open and closed system. Oil & Gas Science and Technology, 44(3), 87–411.Google Scholar
  5. Błaszczyk, M., Jania, J. A., & Kolondra, L. (2013). Fluctuations of tidewater glaciers in Hornsund Fjord (southern Svalbard) since the beginning of the 20th century. Polish Polar Research, 34, 327–352.Google Scholar
  6. Boitsov, S., Petrova, V., Jensen, H. K. B., Kursheva, A., Litvinenko, I., & Klungsøyr, J. (2013). Sources of polycyclic aromatic hydrocarbons in marine sediments from southern and northern areas of the Norwegian continental shelf. Marine Environmental Research, 87-88, 73–84.CrossRefGoogle Scholar
  7. Borgå, K., & Di Guardo, A. (2005). Comparing measured and predicted PCB concentrations in Arctic seawater and marine biota. Science of the Total Environment, 342, 281–300.CrossRefGoogle Scholar
  8. Budzinski, H., Jones, I., Bellocq, J., Piérard, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58(1–2), 85–97.CrossRefGoogle Scholar
  9. CCME, (2012). Canadian Council of Ministers of the Environment. http://www.ccme. Ca/. Accessed 16 July 2016.
  10. Colombo, J. C., Pelletier, E., Brochu, C., Khalil, M., & Cattogio, J. A. (1989). Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de la Plata estuary, Argentina. Environmental Science & Technology, 23, 888–894. doi: 10.1021/es00065a019.CrossRefGoogle Scholar
  11. Cottier, F., Tverberg, V., Inall, M., Svendsen, H., Nilsen, F., & Griffiths, C. (2005). Water mass modification in an Arctic fjord through cross-shelf exchange : The seasonal hydrography of Kongsfjorden. Svalbard. Journal of geophysical research. doi: 10.1029/2004JC002757.Google Scholar
  12. Dahle, S., Savinov, V. M., Matishov, G. G., Evenset, A., & Næs, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) in bottom sediments of the Kara Sea shelf. Gulf of Ob and Yenisei Bay, Science of the Total Environment. doi: 10.1016/S0048-9697(02)00484-9.Google Scholar
  13. Damstra, T., Barlow, S., Bergman, A., Kavlock, R., & Van Der Kraak, G. (Eds.). (2002). Global assessment of the state of the science of endocrine disruptors. International Programme on Chemical Safety. WHO/PCS/EDC/02.2. Geneva: World Health Organization.Google Scholar
  14. Dethleff, D., Nürnberg D., Reimnitz, E., Saarso, M., Savchenko Y. P. (1993). East Siberian Arctic Region Expedition '92: The Laptev Sea: Its significance for Arctic sea-ice formation and transpolar sediment flux, Polar Research, 120, 44Google Scholar
  15. Dommergue, A., Larose, C., Fain, X., Clarisse, O., Foucher, D., Hintelmann, H., Schneides, D., & Ferrari, C. (2010). Deposition of mercury species in the Ny-Alesund area (79°N) and their transfer during snowmelt. Environmental Science & Technology, 44, 901–907.CrossRefGoogle Scholar
  16. Drewnik, A., Węsławski, J. M., Włodarska-Kowalczuk, M., Łącka, M., Promińska, A., Zaborska, A., & Gluchowska, M. (2016). From the worm’s point of view. I: Environmental settings of benthic ecosystems in Arctic fjord (Hornsund, Spitsbergen). Polar Biology. doi: 10.1007/s00300-015-1867-9.Google Scholar
  17. Eckhardt, S., Breivik, K., Manø, S., & Stohl, A. (2007). Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions. Atmospheric Chemistry and Physics, 7, 4527–4536.CrossRefGoogle Scholar
  18. Evenset, A., Christensen, G. N., Carroll, J., Zaborska, A., Berger, U., Herzke, D., & Gregor, D. (2007). Historical trends in persistent organic pollutants and metals recorded in sediment from Lake Ellasjøen, Bjørnøya, Norwegian Arctic. Environmental Pollution, 146, 196–205.CrossRefGoogle Scholar
  19. Evenset, A., Christensen, G.N., Palerud, R. (2009). Contaminants in marine sediments from Isfjorden, Svalbard 2009: Longyearbyen, Barentsburg, Pyramiden and Coles Bay (in Norwegian). Akvaplan niva report 4707–1, 134Google Scholar
  20. Evenset, A., Hallanger, I. G., Tessmann, M., Warner, N., Ruus, A., Borgå, K., Gabrielsen, G. W., Christensen, G., & Renaud, P. E. (2016). Seasonal variation in accumulation of persistent organic pollutants in an Arctic marine benthic food web. Science of the Total Environment, 542, 108–120.CrossRefGoogle Scholar
  21. Flynn, W. W. (1968). The determination of low levels of polonium-210 in environmental samples. Analytica Chimica Acta, 43, 221–227.CrossRefGoogle Scholar
  22. Gaul, H. (1989) Organochlorine compounds in water and sea ice of the European Arctic sea’. Global significance of the transport and accumulation of polychlorinatedhydrocarbons in the Arctic, Oslo, Unpublished conference proceedings.Google Scholar
  23. Gioia, R., Lohmann, R., Dachs, J., Temme, C., Lakaschus, S., Schulz-Bull, D., Hand, I., & Jones, K. C. (2008). Polychlorinated biphenyls in air and water of the North Atlantic and Arctic Ocean. Journal of Geophysical Research. doi: 10.1029/2007JD009750.Google Scholar
  24. Gioia, R., Eckhardt, S., Breivik, K., Jaward, F. M., Prieto, A., Nizzetto, L., & Jones, K. C. (2011). Evidence for major emissions of PCBs in the west African region. Environmental Science & Technology, 45, 1349–1355.CrossRefGoogle Scholar
  25. Görlich, K., Węsławski, J. M., & Zajączkowski, M. (1987). Suspension settling effect on macrobenthos biomass distribution in the Hornsund fjord. Spitsbergen. Polar Research, 175–192.Google Scholar
  26. Gustafsson, Ö., Andersson, T. P., Axelman, J., Bucheli, T. D., Kömp, P., McLachlan, M. S., Sobek, A., & Thörngren, J. O. (2005). Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area. Science of the Total Environment, 432, 261–279.CrossRefGoogle Scholar
  27. Gustafsson, O., Bucheli, T.D., Kukulska, Z., Andersson, M., Largeau, C., Rouzaud, J.-N., et al. (2001). Evaluation of a protocol for the quantification of black carbon in sediments. Global Biogeochemical Cycles, 15 (4), 881–890.Google Scholar
  28. Guy, H. P. (1969). Laboratory theory and methods for sediment analysis. Washington: United states government printing office.Google Scholar
  29. Hermanson, M. H., Isaksson, E. H., Teixeira, C., Muir, D. C. G., Compher, K. M., Li, Y. F., et al. (2005). Current-use and legacy pesticide history in the Austfonna ice cap, Svalbard, Norway. Environmental Science & Technology, 39, 8163–8169.CrossRefGoogle Scholar
  30. Hong, Q., Wang, Y., Luo, X., Chen, S., Chen, J., Cai, M., Cai, M., & Mai, B. (2012). Occurrence of polychlorinated biphenyls (PCBs) together with sediment properties in the surface sediments of the Bering Sea, Chukchi Sea and Canada Basin. Chemosphere, 88, 1340–1345.CrossRefGoogle Scholar
  31. Hop, H., Sagerup, K., Schlabach, M., Gabrielsen G.W. (2001). Persistent organic pollutants in marine macro-benthos near urban settlements in Svalbard; Longyearbyen, Pyramiden, Barentsburg, and Ny-Ålesund. Norwegian Polar institute report no.8 2001.Google Scholar
  32. Hop, H., Pearson, T., Hegseth, E. N., Kovacs, K. M., Wiencke, C., Kwasniewski, S., Eiane, K., Mehlum, F., Gulliksen, B., Wlodarska-kowalczuk, M., Lydersen, C., Weslawski, J. M., et al. (2002). The marine ecosystem of Kongsfjorden, Svalbard. Polar Research, 21(1), 167–208.CrossRefGoogle Scholar
  33. Howsam, M., & Jones, K. (1998). Sources of PAHs in the environment. In A. H. Neilson (Ed.), PAHs and related compounds (pp. 137–174). Berlin: Springer Verlag.CrossRefGoogle Scholar
  34. Hung, C. C., Gong, G. C., Ko, F. C., Chen, H. Y., Hsu, M. L., Wu, J. M., Peng, S. C., Nan, F. H., Yeager, K. M., & Santschi, P. H. (2010). Relationships between persistent organic pollutants and carbonaceous materials in aquatic sediments of Taiwan. Marine Pollution Bulletin, 60, 1010–1017.CrossRefGoogle Scholar
  35. Iwata, H., Tanabe, S., Sakal, N., & Tatsukawa, R. (1993). Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate. Environmental Science & Technology. doi: 10.1021/es00043a007.Google Scholar
  36. Jiao, L., Zheng, G. J., Minh, T. B., Richardson, B., Chen, L., Zhang, Y., Yeung, L. W., Lam, J. C. W., Yang, X., Lam, P. K. S., & Wong, M. H. (2009). Persistent toxic substances in remote lake and costal sediments from Svalbard, Norwegian Arctic: levels, sources and fluxes. Environmental Pollution, 157, 1342–1351.CrossRefGoogle Scholar
  37. Julshamn, K., Duinker, A., Berntssen, M., Nilsen, B. M., Frantzen, S., Nedreaas, K., & Maage, A. (2013). A baseline study on levels of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, non-ortho and mono-ortho PCBs, non-dioxin-like PCBs and polybrominated diphenyl ethers in Northeast Arctic cod (Gadus morhua) from different parts of the Barents Sea. Marine Pollution Bulletin, 75, 250–258.CrossRefGoogle Scholar
  38. Kallenborn, R., Ottesen, R. T., Gabrielsen, G. W., Schrum, C., Evenset, A., Ruus, A., Benjaminsen, H., Sagerup, K., Christensen, G., Eggen, O., Carlsson, P., Johansson-Karlsson, E., Polder, A., Pedersen, H. R., & Lundkvist, Q. (2011). PCB on Svalbard report, 2011.Google Scholar
  39. Kanaly, R. A., Harayama, S., & Watanabe, K. (2002). Rhodanobacter sp. strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium. Applied and Environmental Microbiology, 68, 5826–5833.CrossRefGoogle Scholar
  40. Karasiński, G., Posyniak, M., Bloch, M., Sobolewski, P., Małarzewski, Ł., & Soroka, J. (2014). Lidar observations of volcanic dust over Polish Polar Station at Hornsund after eruptions of Eyjafjallajökull and Grímsvötn. Acta Geophisica, 62(2), 316–339.Google Scholar
  41. Kuliński, K., Kędra, M., Legeżyńska, J., & Zaborska, A. (2014). Particulate organic matter sinks and sources in high Arctic fjord. Journal of Marine Systems, 139, 27–37.CrossRefGoogle Scholar
  42. Kuzyk, Z. A., Stow, J. P., Burgess, N. M., Solomon, S. M., & Reimer, K. J. (2005). PCBs in sediments and the coastal food web near a local contaminant source in Saglek Bay. Labrador, Science of the Total Environment. doi: 10.1016/j.scitotenv.2005.04.050.Google Scholar
  43. Li, Y. E., & Macdonald, R. W. (2005). Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota: a review. Science of the Total Environment, 342, 87–106.CrossRefGoogle Scholar
  44. Lohmann, R., Breivik, K., Dachs, J., & Muir, D. (2007). Global fate of POPs: Current and future research directions. Environmental Pollution, 150, 150–165.CrossRefGoogle Scholar
  45. Lohse, J. (1988). Distribution of organochlorine pollutants in North sea sediment. Mitteilungen aus dem Geologisch−Palaeontologischen Institut der Universitaet Hamburg 65.Google Scholar
  46. Łokas, E., Zaborska, A., Kolicka, M., Różycki, M., & Zawierucha, K. (2016). Accumulation of atmospheric radionuclides and heavy metals in cryoconite holes on an Arctic glacier. Chemosphere, 160, 162–172.CrossRefGoogle Scholar
  47. Lu, Z., Cai, M., Wang, J., et al. (2013). Levels and distribution of trace metals in surface sediments from Kongsfjorden. Svalbard, Norwegian Arctic. doi: 10.1007/s10653-012-9481-z.Google Scholar
  48. Lubecki, L., & Kowalewska, G. (2010). Distribution and fate of polycyclic aromatic hydrocarbons (PAHs) in recent sediments from the Gulf of Gdańsk (SE Baltic). Oceanology. doi: 10.5697/oc.52-4.669.Google Scholar
  49. Lubecki, L., & Kowalewska, G. (2012). Indices of PAH origin—a case study of the Gulf of Gdańsk (SE Baltic) sediments. Polycyclic Aromatic Compounds., 32(3), 335–363.CrossRefGoogle Scholar
  50. Macdonald, D. D., Carr, R. S., Calder, F. D., Long, E. R., & Ingersoll, C. G. (1996). Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology. doi: 10.1007/BF00118995.Google Scholar
  51. Macdonald, R. W., Barrie, L. A., Bidleman, T. F., Diamond, M. L., Gregor, R. G., Semkin, R. G., et al. (2000). Contaminants in the Canadian Arctic: 5 years of progress in understanding sources occurrence and pathways. Science of the Total Environment, 254, 93–234.CrossRefGoogle Scholar
  52. Macdonald, R. W., Harner, T., & Fyfe, J. (2005). Recent climate change in the Arctic and its impact on contaminants pathway and interpretation on temporal trend data. Science of the Total Environment. doi: 10.1016/j.scitotenv.2004.12.059.Google Scholar
  53. Machado, M. C. S., Loyola, J., Quiterio, S. L., da Rocha, G. O., de Andrade, J. B., & Arbilla, G. (2009). Particle-associated polycyclic aromatic hydrocarbons and their dry deposition fluxes from a bus-station in the Rio de Janeiro metropolitan area, Brazil. Journal of the Brazilian Chemical Society., 20, 1565–1573.CrossRefGoogle Scholar
  54. Maher Jr., L. J. (1998). Automating the dreary measurements for loss on ignition. INQUA Sub-Commission on Data-Handling Methods, newsletter, 18.Google Scholar
  55. Mille, G., Chen, J. Y., & Dou, H. J. M. (1982). Polycyclic aromatic hydrocarbons in Mediterranean coastal sediments. International Journal of Environmental Analytical Chemistry, 11, 295–304.CrossRefGoogle Scholar
  56. MOSJ Environmental monitoring of Svalbard and Jan Mayen Norsk Accessed 16 August 2016
  57. Mostafa, R. A., Wade, L. T., Sweet, T. S., Al-Alimi, A. K. A., & Barakat, O. A. (2009). Distribution and characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of Hadhramout coastal area. Gulf of Aden, Yemen, Journal of Marine Systems, doi. doi: 10.1016/j.jmarsys.2009.02.002.Google Scholar
  58. Muckenhuber, S., Nilsen, F., Korosov, A., & Sandven, S. (2016). Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. The Cryosphere, 10, 149–158.CrossRefGoogle Scholar
  59. Nizzetto, L., Lohmann, R., Gioia, R., Jahnke, A., Temme, C., Dachs, J., & Herckes, P. (2008). PAHs in air and seawater along a North–South Atlantic transect: trends. Processes and Possible Sources; Environmental Science & Technology, 42, 1580–1585.CrossRefGoogle Scholar
  60. Olsson, K., Savinov, V., Gulliksen, B., & Dahle, S. (1998). Contaminants in marine sediments, Svalbard 1997. Akvaplan-niva Report, 414(98), 1386.Google Scholar
  61. Pavlov, V., Pavlova, O., & Korsnes, R. (2004). Sea ice fluxes and drift trajectories from potential pollution sources, computed with a statistical sea ice model of the Arctic Ocean. Journal of Marine Systems. doi: 10.1016/j.jmarsys.2003.11.024.Google Scholar
  62. Pazdro, K. (2007). Assessment of exposure of organisms to persistent organic pollutants (POPs) in marine coastal ecosystems. Monographs; Wyd. Institute of Oceanology, Polish Academy of Sciences, 2007 (in Polish).Google Scholar
  63. Pfirman, S. L., Eicken, H., Bauch, D., & Weeks, W. F. (1995). The potential transport of pollutants by Arctic Sea ice. Science of the Total Environment, 159, 129–146.CrossRefGoogle Scholar
  64. Piechura, J., & Walczowski, W. (2009). Warming of the West Spitsbergen current and sea ice north of Svalbard. Oceanology, 51(2), 149–164.Google Scholar
  65. Poot, A., Jonker, M. T. O., Gillissen, F., & Koelmans, A. A. (2014). Explaining PAH desorption from sediments using rock eval analysis. Environmental Pollution, 193, 247–253.CrossRefGoogle Scholar
  66. Pouch, A., & Zaborska, A. (2015). Climate change influence on migration of contaminants in the Arctic marine environment. In T. Zielinski (Ed.), Impact of climate changes on marine environments (pp. 75–90). Springer.Google Scholar
  67. Pućko, M., Stern, G. A., Macdonald, R. W., Jantunen, L. M., Bidleman, T. F., Wong, F., Barber, D. G., & Rysgaard, S. (2015). The delivery of organic contaminants to the Arctic food web: why sea ice matters. Science of the Total Environment. doi: 10.1016/j.scitotenv.2014.11.040.Google Scholar
  68. Raoux, C. (1991). Modelisation du mecanisme de contamination par des hydrocarbures aromatiques polycycliques (HAP) des sediments marins cotiers de Mediterranee: consequences sur la biodisponibilite des HAP dans le milieu marin. PhD thesis, Nr 565, University Bordeaux I, Bordeaux, France.Google Scholar
  69. Razak, I. A. A., Li, A., & Christensen, E. R. (1996). Association of PAHs, PCBs, 137Cs and 210Pb with clay, silt and organic carbon in sediments. Water Science and Technology, 34(7–8), 29–35.Google Scholar
  70. Rose, N. L., Rose, C. L., Boyle, J. F., & Appleby, G. (2004). Lake−sediment evidence for local and remote sources of atmospherically deposited pollutants on Svalbard. Journal of Paleolimnology, 31, 499–513.CrossRefGoogle Scholar
  71. Sapota, G., Wojtasik, B., Burska, D., & Nowiński, K. (2009). Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from selected fjords, tidal plains and lakes of the North Spitsbergen. Polish Polar Research, 30, 59–76.Google Scholar
  72. Savinov V.M., Savinova T.N., Carroll J., Matishov G.G., Dahle S., Naes K. (2000). Polycyclic aromatic hydrocarbons (PAHs) in sediments of the White Sea, Russia, Marine Pollution Bulletin, doi: 10.1016/S0025 326X(00)00004-7.
  73. Savinov, V. M., Savinova, T. N., Matishov, G. G., Dahle, S., & Næs, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga. Barents Sea, Russia, Science of the Total Environment. doi: 10.1016/S0048-9697(02)00483-7.Google Scholar
  74. Schulz-Bull, D. E., Petrick, G., Bruhn, R., & Duinker, J. C. (1998). Chlorobiphenyls PCB and PAHs in water masses of the northern North Atlantic. Marine Chemistry, 61, 101–114.CrossRefGoogle Scholar
  75. Sicre, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: Occurrence and origin. Atmospheric Environment, 21, 2247–2259.CrossRefGoogle Scholar
  76. Stockholm Convention, 2011. Stockholm Convention on Persistent Organic Pollutants (POPs). Accessed 16 August 2016
  77. Svendsen, H., Beszczynska-Moller, A., Hagen, J. O., Lefauconnier, B., Tverberg, V., Gerland, S., Orbok, J. B., Bischof, K., Papucci, C., Zajaczkowski, M., Azzolini, R., Bruland, O., Wiencke, C., Winther, J. G., & Dallmann, W. (2002). The physical environment of Kongsfjorden–Krossfjorden, an Arctic fjord system in Svalbard. Polar Research. doi: 10.1111/j.1751-8369.2002.tb00072.x.Google Scholar
  78. Szczybelski, A. S., van den Heuvel-Greve, M. J., Kampen, T., Wang, C., van den Brink, N. W., & Koelmans, A. A. (2016). Bioaccumulation of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and hexachlorobenzene by three Arctic benthic species from Kongsfjorden (Svalbard, Norway). Marine Pollution Bulletin, 112, 65–74.CrossRefGoogle Scholar
  79. Van den Heuvel-Greve, M., Szczyberski, A. S., Van den Brink, N. W., Kotterman, M. J. J., Kwadijk, C. J. A. F., Evenset, A., & Murk, A. J. (2016). Low organotin contamination of harbor sediment in Svalbard. Polar Biology. doi: 10.1007/s003000-016-1907-0.Google Scholar
  80. Vos, J. G., Dybing, E., Greim, H. A., Ladefoged, O., Lambre, C., Tarazona, J. V., Brandt, I., & Vehaak, A. D. (2000). Health effects of endocrine—disrupting chemicals of wildlife, with special evidence to the European situation. Critical Reviews in Toxicology, 30, 71–133.CrossRefGoogle Scholar
  81. Walczowski, W. (2014). Atlantic Water in the Nordic Seas. Properties, Variability, Climatic Importance, GeoPlanet: Earth and Planetary Sciences, Springer International Publishing, pp. 174.Google Scholar
  82. Walker, W. A. (1996). Exogenous nucleotides and gastrointestinal immunity. Transplantation Proceedings, 28, 2438–2441.Google Scholar
  83. Walker, T. R., Crittenden, P. D., Dauvalter, V. A., Jones, V., Kuhry, P., Loskutova, O., Mokkola, K., Nikula, A., Patova, E., Ponomarev, V. I., Pystina, T., Ratti, O., Solovieva, N., Stenina, A., Virtanen, T., & Young, S. D. (2009). Multiple indicators of human impacts on the environment in the Pechora Basin, north−eastern European Russia. Ecological Indicators, 9, 765–779.CrossRefGoogle Scholar
  84. Wang, W., Simonich, S. L. M., Xue, M., Zhao, J., Zhang, N., Wang, R., Cao, J., & Tao, S. (2007). Concentrations, sources and spatial distribution of polycyclic aromatic hydrocarbons in soils from Beijing, Tianjin and surrounding areas. North China. Environmental Pollution. doi: 10.1016/j.envpol.2010.01.021.Google Scholar
  85. Węsławski, J. M., Jankowski, A., Kwaśniewski, S., Swerpel, S., & Ryg, M. (1991). Summer hydrology and zooplankton in two Svalbard fjords. Polish Polar Reserch, 12(3), 445–460.Google Scholar
  86. Wiedmann, I., Reigstad, M., Marquardt, M., Vader, A., & Gabrielse, T. M. (2016). Seasonality of vertical flux and sinking particle characteristics in an ice-free high arctic fjord—different from subarctic fjords? Journal of Marine Systems, 154, 192–205.CrossRefGoogle Scholar
  87. Yunker, M. B., Snowdon, L. R., MacDonald, R. W., Smith, J. N., Fowler, M. G., Skibo, D. N., McLaughlin, F. A., Danyushevskaya, A. I., Petrova, V. I., & Ivanov, G. I. (1996). Polycyclic aromatic hydrocarbon composition and potential sources for sediment samples from the Beaufort and Barents seas. Environmental Science & Technology. doi: 10.1021/es950523k.Google Scholar
  88. Yunker, M. B., Macdonald, R. W., Ross, P. S., Johannessen, S. C., & Dangerfield, N. (2015). Alkane and PAH provenance and potentioal bioavailability in coastal marine sediments subject to a gradient of anthropogenic sources in British Columbia, Canada. Organic Geochemistry, 89-90, 80–166.CrossRefGoogle Scholar
  89. Zaborska, A., Pempkowiak, J., & Papucci, C. (2006). Some sediment characteristics and sedimentation rates in an Arctic Fjord (Kongsfjorden , Svalbard). Annu. Environ. Prot., 8, 79–96.Google Scholar
  90. Zaborska, A., Carroll, J., Papucci, C., & Pempkowiak, J. (2007). Intercomparison of alpha and gamma spectrometry techniques used in 210Pb geochronology. Journal of Environmental Radioactivity, 93(1), 38–50.CrossRefGoogle Scholar
  91. Zaborska, A., Carroll, J., Pazdro, K., & Pempkowiak, J. (2011). Spatio-temporal patterns of PAHs. PCBs and HCB in sediments of the western Barents Sea, Oceanology, 53, 1005–1026.Google Scholar
  92. Zaborska, A., Włodarska-Kowalczuk, M., Legeżyńska, J., Jankowska, E., Winogradow, A., & Deja, K. (2016). Sedimentary organic matter sources, benthic consumption and burial in West Spitsbergen fjords—signs of maturing of Arctic fjordic systems? Journal of Marine Systems. doi: 10.1016/j.jmarsys.2016.11.005.Google Scholar
  93. Zajączkowski, M., Szczuciński, W., & Bojanowski, R. (2004). Recent changes in sediment accumulation rates in Adventfjorden, Svalbard. Oceanology, 46(2), 217–231.Google Scholar
  94. Zhu, C., Li, Y., Wang, P., Chen, Z., Ren, D., Sebugere, P., Zhang, Q., & Jiang, G. (2015). Polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs) in environmental samples from Ny—Alesund and London Island, Svalbard, the Arctic. Chemosphere, 126, 40–46.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Institute of OceanologyPolish Academy of SciencesSopotPoland

Personalised recommendations