Skip to main content
Log in

Cape Fear: monitoring basic hydrological processes in an outdoor hillslope plot

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Cape Fear is an outdoor 7 × 7 m2 hillslope laboratory located at the University of Tuscia, Viterbo, Italy, and is equipped with real-time monitoring sensors used to analyse runoff generation. In this paper, hydrological phenomena that occurred during Cape Fear’s first 2 years of operation are reported to provide insight into the basic dynamics underlying the hydrological response at the hillslope scale. Based on our findings, surface and subsurface runoff are likely driven by rainfall-threshold phenomena, and evapotranspiration phenomena account for more than 70% of rainfall water input. Future studies will investigate the threshold relationship between rainfall and runoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Apiwantragoon, P., Benson, C. H., & Albright, W. H. (2014). Field hydrology of water balance covers for waste containment. Journal of Geotechnical and Geoenvironmental Engineering, 141(2), 04014101.

    Article  Google Scholar 

  • Arnaez, J., Lasanta, T., Ruiz-Flaño, P., & Ortigosa, L. (2007). Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research, 93(2), 324–334.

    Article  Google Scholar 

  • Beven, K. (2001). Rainfall-runoff modelling: the primer. West Sussex: Wiley.

    Google Scholar 

  • Biemelt, D., Schapp, A., & Grünewald, U. (2011). Hydrological observation and modelling relationship for the determination of water budget in Lusatian post-mining landscape. Physics and Chemistry of the Earth, Parts A/B/C, 36(1–4), 3–18.

    Article  Google Scholar 

  • Dobriyal, P., Qureshi, A., Badola, R., & Hussain, S. A. (2012). A review of the methods available for estimating soil moisture and its implications for water resource management. Journal of Hydrology, 458—459, 110–117. doi:10.1016/j.jhydrol.2012.06.021.

    Article  Google Scholar 

  • Feltrin, R. M., dePaiva, J. B. D., dePaiva, E. M. C. D., & Beling, F. A. (2011). Lysimeter soil water balance evaluation for an experiment developed in the southern Brazilian Atlantic Forest region. Hydrological Processes, 25(15), 2321–2328.

    Article  Google Scholar 

  • Fu, B., Wang, Y., Xu, P., & Wang, D. (2009). Changes in overland flow and sediment during simulated rainfall events on cropland in hilly areas of the Sichuan Basin, China. Progress in Natural Science, 19(11), 1613–1618.

    Article  Google Scholar 

  • Gevaert, A. I., Teuling, A. J., Uijlenhoet, R., DeLong, S. B., Huxman, T. E., Pangle, L. A., Breshears, D. D., Chorover, J., Pelletier, J. D., Saleska, S. R., Zeng, X., & Troch, P. A. (2014). Hillslope-scale experiment demonstrates the role of convergence during two-step saturation. Hydrology and Earth System Sciences, 18(9), 3681–3692. doi:10.5194/hess-18-3681-2014.

    Article  Google Scholar 

  • Ghahramani, A., Ishikawa, Y., Gomi, T., Shiraki, K., & Miyata, S. (2011). Effect of ground cover on splash and sheetwash erosion over a steep forested hillslope: a plot-scale study. Catena, 85(1), 34–47.

    Article  Google Scholar 

  • Gómez, J. A., Vanderlinden, K., & Nearing, M. A. (2005). Spatial variability of surface roughness and hydraulic conductivity after disk tillage: implications for runoff variability. Journal of Hydrology, 311(1–4), 143–156.

    Article  Google Scholar 

  • Gomi, T., Sidle, R. C., & Richardson, J. (2002). Understanding processes and downstream linkages of headwater systems. Bioscience, 52(10), 905–916.

    Article  Google Scholar 

  • Grimaldi, S., Petroselli, A., Baldini, L., & Gorgucci, E. (2017). Description and preliminary results of a 100 square meter rain gauge. Journal of Hydrology. doi:10.1016/j.jhydrol.2015.09.076.

  • He, Z., Zhao, W., Liu, H., & Chang, X. (2012). The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: a case study in northwestern China’s Qilian Mountains. Journal of Hydrology, 420–421, 183–190.

    Article  Google Scholar 

  • He, Z., Weng, H., Ho, H., Ran, Q., & Mao, M. (2014). Soil erosion and pollutant transport during rainfall-runoff processes. Water Resources, 41(5), 604–611.

    Article  CAS  Google Scholar 

  • Heisler-White, J. L., Knapp, A. K., & Kelly, E. F. (2008). Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland. Oecologia, 158(1), 129–140. doi:10.1007/s00442-008-1116-9.

    Article  Google Scholar 

  • Hofer, M., Lehmann, P., Biemelt, D., Stähli, M., & Krafczyk, M. (2011). Modelling subsurface drainage pathways in an artificial catchment. Physics and Chemistry of the Earth, Parts A/B/C, 36(1–4), 101–112. doi:10.1016/j.pce.2010.04.020.

    Article  Google Scholar 

  • Hrnčíř, M., Šanda, M., Kulasová, A., & Císlerová, M. (2010). Runoff formation in a small catchment at hillslope and catchment scales. Hydrological Processes, 24(16), 2248–2256.

    Article  Google Scholar 

  • Janzen, D., & McDonnell, J. J. (2015). A stochastic approach to modelling and understanding hillslope runoff connectivity dynamics. Ecological Modelling, 298, 64–74.

    Article  Google Scholar 

  • Kampf, S. K., & Burges, S. J. (2010). Quantifying the water balance in a planar hillslope plot: effects of measurement errors on flow prediction. Journal of Hydrology, 380(1–2), 191–202.

    Article  Google Scholar 

  • Kendall, C., McDonnell, J. J., & Gu, W. Z. (2001). A look inside ‘black box’ hydrograph separation models: a study at the Hydrohill catchment. Hydrological Processes, 15(10), 1877–1902.

    Article  Google Scholar 

  • Li, X., Niu, J. Z., Li, J., Xie, B. Y., Han, Y. N., Tan, J. P., & Zhang, Y. H. (2012). Characteristics of runoff and sediment generation of forest vegetation on a hill slope by use of artificial rainfall apparatus. Journal of Forestry Research, 23(3), 419–424.

    Article  CAS  Google Scholar 

  • Li, Q., Zhu, Q., Zheng, J., Liao, K., & Yang, G. (2015). Soil moisture response to rainfall in forestland and vegetable plot in Taihu Lake Basin, China. Chinese Geographical Science, 25(4), 426–437. doi:10.1007/s11769-014-0715-0.

    Article  Google Scholar 

  • Liu, G., Tian, G., Shu, D., Lin, S., & Lui, S. (2005). Characteristics of surface runoff and throughflow in a purple soil of southwestern China under various rainfall events. Hydrological Processes, 19(9), 1883–1891.

    Article  Google Scholar 

  • Luo, C., Gao, Y., Zhu, B., & Wang, T. (2013). Sprinkler-based rainfall simulation experiments to assess nitrogen and phosphorus losses from a hillslope cropland of purple soil in China. Sustainability of Water Quality and Ecology., 1-2, 40–47.

    Article  Google Scholar 

  • Miyata, S., Kosugi, K., Gomi, T., & Mizuyama, T. (2009). Effects of forest floor coverage on overland flow and soil erosion on hillslopes in Japanese cypress plantation forests. Water Resources Research, 45(6), W06402. doi:10.1029/2008WR007270.

    Article  Google Scholar 

  • Mu, W., Yu, F., Li, C., Xie, Y., Tian, J., Liu, J., & Zhao, N. (2015). Effects of rainfall intensity and slope gradient on runoff and soil moisture content on different growing stages of spring maize. Water, 7(6), 2990–3008.

    Article  Google Scholar 

  • Niu, G. Y., Pasetto, D., Scudeler, C., Paniconi, C., Putti, M., Troch, P. A., DeLong, S. B., Dontsova, K., Pangle, L., Breshears, D. D., Chorover, J., Huxman, T. E., Pelletier, J., Saleska, S. R., & Zeng, X. (2014). Incipient subsurface heterogeneity and its effect on overland flow generation—insight from a modeling study of the first experiment at the biosphere 2 landscape evolution observatory. Hydrology and Earth System Sciences, 18(5), 1873–1883. doi:10.5194/hess-18-1873-2014.

    Article  Google Scholar 

  • Petroselli, A., Leone, A., Ripa, M. N., & Recanatesi, F. (2014). Linking phosphorus export and hydrologic modeling: a case study in Central Italy. Environmental Monitoring and Assessment., 186(11), 7849–7861.

    Article  CAS  Google Scholar 

  • Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., Ogden, F., Selker, J., & Wendroth, O. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: a review. Vadose Zone Journal, 7(1), 358–389. doi:10.2136/vzj2007.0143.

    Article  Google Scholar 

  • Sarkar, R., Dutta, S., & Dubey, A. K. (2015). An insight into the runoff generation processes in wet sub-tropics: field evidences from a vegetated hillslope plot. Catena, 128, 31–43.

    Article  Google Scholar 

  • Stomph, T. J., deRidder, N., Steenhuis, T. S., & VandeGiesen, N. C. (2002). Scale effects of Hortonian overland flow and rainfall-runoff dynamics: laboratory validation of a process-based model. Earth Surface Processes and Landforms, 27(8), 847–855. doi:10.1002/esp.356.

    Article  Google Scholar 

  • Sun, F., Lü, Y., Wang, J., Hu, J., & Fu, B. (2015). Soil moisture dynamics of typical ecosystems in response to precipitation: a monitoring-based analysis of hydrological service in the Qilian Mountains. Catena, 129, 63–75.

    Article  Google Scholar 

  • Tauro, F., Grimaldi, S., Petroselli, A., Rulli, M. C., & Porfiri, M. (2012). Fluorescent particle tracers in surface hydrology: a proof of concept in a semi-natural hillslope. Hydrology and Earth System Sciences, 16(8), 2973–2983.

    Article  Google Scholar 

  • Templeton, R. C., Vivoni, E. R., Méndez-Barroso, L. A., Pierini, N. A., Anderson, C. A., Rango, A., Laliberte, A. S., & Scott, R. L. (2014). High-resolution characterization of a semiarid watershed: implications on evapotranspiration estimates. Journal of Hydrology, 509, 306–319.

    Article  Google Scholar 

  • Troch, P. A., Carrillo, G. A., Heidbüchel, I., Rajagopal, S., Switanek, M., Volkmann, T. H. M., & Yaeger, M. (2009). Dealing with landscape heterogeneity in watershed hydrology: a review of recent progress toward new hydrological theory. Geography Compass, 3(1), 375–392. doi:10.1111/j.1749-8198.2008.00186.x.

    Article  Google Scholar 

  • Yaseef, N. R., Yakir, D., Rotenberg, E., Schiller, G., & Cohen, S. (2010). Ecohydrology of a semi-arid forest: partitioning among water balance components and its implications for predicted precipitation changes. Ecohydrology, 3(2), 143–154. doi:10.1002/eco.65.

    Google Scholar 

  • Yu, Y., Wei, W., Chen, L. D., Jia, F. Y., Yang, L., Zhang, H. D., & Feng, T. J. (2015). Responses of vertical soil moisture to rainfall pulses and land uses in a typical loess hilly area, China. Solid Earth, 6(2), 595–608.

    Article  Google Scholar 

  • Zehe, E., & Blöschl, G. (2004). Predictability of hydrologic response at the plot and catchment scales: role of initial conditions. Water Resources Research, 40(10), W10202. doi:10.1029/2003WR 002869.

    Article  Google Scholar 

  • Zhang, S., Liu, C., Yao, Z., & Guo, L. (2007). Experimental study on lag time for a small watershed. Hydrological Processes, 21(8), 1045–1054. doi:10.1002/hyp.6285.

    Article  Google Scholar 

Download references

Acknowledgements

The University of Tuscia technicians Paolo Ciorba, Giuliano Cipollari, Roberto Rapiti, and Massimo Edoardo Vollaro are acknowledged for their roles in creating Cape Fear and continuous assistance in monitoring the hillslope plot. Dr. Tauro acknowledges support from the UNESCO Chair in Water Resources Management and Culture. The authors thank Dr. Salvatore Grimaldi for insightful discussion of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Petroselli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petroselli, A., Tauro, F. Cape Fear: monitoring basic hydrological processes in an outdoor hillslope plot. Environ Monit Assess 189, 132 (2017). https://doi.org/10.1007/s10661-017-5851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5851-4

Keywords

Navigation