Skip to main content

Advertisement

Log in

Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Reliable and frequent information on groundwater behavior and dynamics is very important for effective groundwater resource management at appropriate spatial scales. This information is rarely available in developing countries and thus poses a challenge for groundwater managers. The in situ data and groundwater modeling tools are limited in their ability to cover large domains. Remote sensing technology can now be used to continuously collect information on hydrological cycle in a cost-effective way. This study evaluates the effectiveness of a remote sensing integrated physical modeling approach for groundwater management in Indus Basin. The Gravity Recovery and Climate Experiment Satellite (GRACE)-based gravity anomalies from 2003 to 2010 were processed to generate monthly groundwater storage changes using the Variable Infiltration Capacity (VIC) hydrologic model. The groundwater storage is the key parameter of interest for groundwater resource management. The spatial and temporal patterns in groundwater storage (GWS) are useful for devising the appropriate groundwater management strategies. GRACE-estimated GWS information with large-scale coverage is valuable for basin-scale monitoring and decision making. This frequently available information is found useful for the identification of groundwater recharge areas, groundwater storage depletion, and pinpointing of the areas where groundwater sustainability is at risk. The GWS anomalies were found to favorably agree with groundwater model simulations from Visual MODFLOW and in situ data. Mostly, a moderate to severe GWS depletion is observed causing a vulnerable situation to the sustainability of this groundwater resource. For the sustainable groundwater management, the region needs to implement groundwater policies and adopt water conservation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad, M. D., Turral, H., & Nazeer, A. (2009). Diagnosing irrigation performance and water productivity through satellite remote sensing and secondary data in a large irrigation system of Pakistan. Agricultural Water Management, 96(4), 551–564.

    Article  Google Scholar 

  • Ahmad, Z., Ashraf, A., Fryar, A., & Akhter, G. (2011). Composite use of numerical groundwater flow modeling and geoinformatics techniques for monitoring Indus Basin aquifer, Pakistan. Environmental Monitoring and Assessment, 173(1–4), 447–457.

    Article  Google Scholar 

  • Alam, N., & Olsthoorn Theo, N. (2014). Punjab scavenger wells for sustainable additional groundwater irrigation. Agricultural Water Management, 138, 55–67.

    Article  Google Scholar 

  • Asghar, M. N., Prathapar, S. A., & Shafique, M. S. (2002). Extracting relatively-fresh groundwater from aquifers underlain by salty groundwater. Agric Water Man-age, 52, 119–137.

    Article  Google Scholar 

  • Ashraf, A., & Ahmad, Z. (2008). Regional groundwater flow modelling of Upper Chaj Doab of Indus Basin, Pakistan using finite element model (Feflow) and geoinformatics. Geophysical Journal International, 173(1), 17–24.

  • Ashraf, M., Bhatti, Z. A., & Zaka-Ullah. (2011). Diagnostic analysis and fine tuning of skimming well design and operational strategies for sustain-able groundwater management-Indus basin of Pakistan. Irrigation and Drainage. doi:10.1002/ird.636.

    Google Scholar 

  • Basharat, M., & Tariq, A. (2013). Long-tem groundwater quality and saline intrusion assessment in an irrigated environment: A case study of the aquifer under the LBDC Irrigation System. Irrigation and Drainage, 62(4), 510–523.

  • Bennett, G. D., Rehman, A., Sheikh, I. A., & Ali, S. (1967). Analysis of aquifer tests in the Punjab region of West Pakistan. Washington, DC: USGS Water Supply Paper 1608-G.

    Google Scholar 

  • Brunner, P., Hendricks Franssen, H.-J., Kgotlhang, L., Bauer-Gottwein, P., & Kinzelbach, W. (2007). How can remote sensing contribute in groundwater modeling? Hydrogeology Journal, 15(1), 5–18.

    Article  Google Scholar 

  • Chandio, B., & Larock, B. (1984). Three‐dimensional model of a skimming well. Journal of Irrigation and Drainage Engineering, 110(3), 275–288.

  • Chandio, A. S., & Lee, T. S. (2012). Managing saline water intrusion in the lower Indus Basin Aquifer. Water Resources Management, 26(6), 1555–1576.

  • Cheema, M. J. M., Immerzeel, W. W., & Bastiaanssen, W. G. M. (2014). Spatial quantification of groundwater abstraction in the irrigated Indus Basin. Ground Water, 52(1), 25–36.

    Article  CAS  Google Scholar 

  • Dar, I. A., Sankar, K., & Dar, M. A. (2010). Remote sensing technology and geographic information system modeling: an integrated approach towards the mapping of groundwater potential zones in Hardrock terrain, Mamundiyar basin. Journal of Hydrology, 394, 285–295.

    Article  Google Scholar 

  • Duan, X. J., Guo, J. Y., Shum, C. K., & Wal, W. (2009). On the postprocessing removal of correlated errors in GRACE temporal gravity field solutions. J Geodesy, 83(11), 1095–1106. doi:10.1007/s00190-009-0327-0.

    Article  Google Scholar 

  • Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D. et al. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences of the United States of America 111(9):3239–3244.

  • Famiglietti, J. S., Lo, M., Ho, S. L., Bethune, J., Anderson, K. J., Syed, T. H., Swenson, S. C., De Linage, C. R., & Rodell, M. (2011). Satellites measure recent rates of groundwater depletion in California’s central valley. Geophysical Research Letters, 38. doi:10.1029/2010GL046442.

  • Feng, W., Zhong, M., Lemoine, J. M., Biancale, R., Hsu, H. T., & Xia, J. (2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research, 49(4), 2110–2118. doi:10.1002/wrcr.20192.

    Article  Google Scholar 

  • Government of Punjab (2012). Pakistan Development Statistics, Lahore. Bureau of Statistics 48.

  • Iqbal, N., Hossain, F., Lee, H., & Akhter, G. (2016). Satellite gravimetric estimation of groundwater storage variations over Indus Basin in Pakistan. IEEE JSTAR, 9(8), 3524–3534. doi:10.1109/JSTARS.2016.2574378.

    Google Scholar 

  • Jin, S., & Feng, G. (2013). Large-scale variations of global groundwater from satellite gravimetry and hydrological models, 2002–2012. Global and Planetary Change, 106, 20–30.

  • Kashaigili, J. J., Mashauri, D. A., & Abdo, G. (2003). Groundwater management by using mathematical modeling: case of the Makutupora groundwater basin in Dodoma Tanzania. Botswana Journal of Technology, 12(1), 19–24.

    Article  Google Scholar 

  • Kazmi, S. I., Ertsen, M. W., & Rafique, A. M. (2012). The impact of conjunctive use of canal and tube well water in lagar irrigated area, Pakistan. Physics and Chemistry of the Earth, 47–48, 86–98.

  • Khan, S., Rana, T., Gabriel, H. F., & Ullah, M. K. (2008). Hydrogeologic assessment of escalating groundwater exploitation in the Indus Basin, Pakistan. Hydrobiological Journal, 16(8), 635–1654.

  • Kummerow, C., William, B., Toshiaki, K., James, S., & Simpson, J. (1998). The tropical rainfall measuring mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15(3), 809–8017. doi:10.1175/1520- 0426(1998)015<0809:TTRMMT>2.0.CO;2.

    Article  Google Scholar 

  • Kusche, J. (2007). Approximate decorrelation and non-isotropic smoothing of time variable GRACE-type gravity field models. J Geodesy, 81(11), 733–749. doi:10.1007/s00190-007-01.

    Article  Google Scholar 

  • Lee, H., Jung, H. C., Yuan, T., Beighley, E., Aierken, A., Shum, C., Duan, J, Shang, K. (2016). Downscaling GRACE-derived water storage changes over central Congo Basin with PALSAR ScanSAR images and PALSAR interferometry, Remote Sensing of Environment, in review.

  • Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for GSMs. Journal of Geophysical Research, 99, 14415–14428. doi:10.1029/94JD00483.

    Article  Google Scholar 

  • Lo, M.-H., Famiglietti, J. S., Yeh, P. J.-F., & Syed, T. H. (2010). Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data. Water Resources Res, 46, 5517.

    Article  Google Scholar 

  • Moore, S., & Fisher, J. B. (2012). Challenges and opportunities in GRACE-Based groundwater storage assessment and management: An example from Yemen. Water Resources Management, 26(6), 1425–1453.

  • Qureshi, A. S., McCornick, P. G., Qadir, M., & Aslam Z. (2008). Managing salinity and waterlogging in the Indus Basin of Pakistan. Agricultural Water Management, 95(1), 1–10.

  • Qureshi, A. S., McCornick, P. G., Sarwar, A., & Sharma, B. R. (2010). Challenges and prospects of sustainable groundwater management in the Indus Basin, Pakistan. Water Resources Management, 24(8), 1551–1569.

  • Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Missippi River Basin (USA) using GRACE. Hydrogeology Journal, 15(1), 159–166.

    Article  CAS  Google Scholar 

  • Rodell, M., Velicogna, I., & Famiglietti, J. S. (2009). Satellite-based estimate of groundwater depletion in India. Nature, 460. doi:10.1038/nature08238.

  • Saeed, M. M., & Ashraf, M. (2005). Feasible design and operational guidelines for skimming wells in the Indus basin, Pakistan. Agricultural Water Management, 74(3), 165–188.

  • Scanlon, B. R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48. doi:10.1029/2011WR011312.

  • Schewe, J., et al. (2013). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences of the United States of America. doi:10.1073/pnas.1222460110.

    Google Scholar 

  • Shum, C. K., Guo, J. Y., Hossain, F., Duan, J., Alsdorf, D. E., Duan, X.-J., Kuo, C.–Y., Lee, H., Schmidt, M., Wang, L. (2011). Inter-annual water storage changes in Asia from GRACE data. In: Lal R et al. (ed) Climate change and food security in South Asia, Springer. doi: 10.1007/978-90-481-9516-9_6.

  • Siddique-E-Akbor, A. H. M., Hossain, F., Sikder, S., Shum, C. K., Tseng, S., Yi, Y., Turk, F. J., & Limaye, A. (2014). Satellite precipitation data driven hydrologic modeling for water resources management, in the Ganges, Brahmaputra and Meghna basins. Earth Interactions, 18(17). doi:10.1175/EI-D-14-0017.1.

  • Singh, A. (2014). Groundwater resources management through the applications of simulation modeling: a review. Science of the Total Environment, 499, 414–423.

    Article  CAS  Google Scholar 

  • Sood, A., & Smakhtin, V. (2015). Global hydrological models: A review. Hydrological Sciences Journal 60(4), 549–565.

  • Stisen, S., McCabe, M. F., Refsgaard, J. C., Lerer, S., & Butts, M. B. (2011). Model parameter analysis using remotely sensed pattern information in a multi-constraint framework. Journal of Hydrology, 409, 337–349.

    Article  Google Scholar 

  • Strassberg, G., Scanlon, B. R., & Rodell, M. (2007). Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains aquifer (USA). Geophysical Research Letters, 34(14). doi:10.1029/2007GL030139.

  • Strassberg, G., Scanlon, B. R., & Chambers, D. (2009). Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains aquifer, central United States. Water Resources Research, 45. doi:10.1029/2008WR006892.

  • Sufi, A. B., Latif, M., & Skogerboe, G. V. (1998). Simulating skimming well techniques for sustainable exploitation of groundwater. Irrigation and Drainage Systems, 12(3), 203–226.

  • Tiwari, V. M., Wahr, J., & Swenson, S. (2009). Dwindling groundwater resources in northern India, from satellite gravity observations. Geophysical Research Letters, 36. doi:10.1029/2009GL039401.

  • Wada, Y., Beek, L. P. H., & Bierkens Marc, F. P. (2014). Non sustainable groundwater sustaining irrigation: a global assessment. Water Resources Research, 48. doi:10.1029/2011WR010562.

  • Werth, S., & Güntner, A. (2010). Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrology and Earth System Sciences, 14, 59–78.

    Article  Google Scholar 

  • Wondzell, S. M., La Nier, J., & Haggerty, R. (2009). Evaluation of alternative groundwater flow models for simulating hyporheic exchange in a small mountain stream. Journal of Hydrology, 364(1), 142–151.

    Article  Google Scholar 

  • Wouters, B., Bonin, J. A., Chambers, D. P., Riva, R. E. M., Sasgen, I., & Wahr, J. (2014). GRACE, time-varying gravity, Earth system dynamics and climate change. Reports on Progress in Physics, 77(11). doi:10.1088/0034-4885/77/11/116801.

  • Wu, J., Hu, B. X., Zhang, D., & Shirley, C. (2003). A three-dimensional numerical method of moments for groundwater flow and solute transport in a nonstationary conductivity field. Advances in Water Resources, 26(11), 1149–1169.

    Article  CAS  Google Scholar 

  • Zhou, Y., & Li, W. (2011). A review of regional groundwater flow modeling. Geoscience Frontiers, 2(2), 205–214.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the NASA SERVIR program (NNX12AM85AG) and NASA WATER (NNX15AC63G) for supporting this work. Authors also express gratitude to Dr. C. K. Shum of Ohio State University for providing the GRACE data processing program. The Pakistan Council of Research in Water Resources (PCRWR), which is the home of the first author, and Quaid-i-Azam University are gratefully acknowledged. This study was made possible because of the generous support provided by the Ivanhoe Foundation (to first author), University of Washington Global Affairs, and VISIT program that provided the training to the first author on GRACE data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveed Iqbal.

Additional information

Submitted to: Environmental Monitoring and Assessment Journal

Appendices

Appendix 1

Fig. 11
figure 11

Results of standard error calculations for the validation period (2008–2010) over the Bari doab

Appendix 2

Fig. 12
figure 12

Results of standard error calculations for the validation period (2008–2010) over the Rechna doab

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, N., Hossain, F., Lee, H. et al. Integrated groundwater resource management in Indus Basin using satellite gravimetry and physical modeling tools. Environ Monit Assess 189, 128 (2017). https://doi.org/10.1007/s10661-017-5846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5846-1

Keywords

Navigation