Advertisement

Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers

  • Anna-Karin Almén
  • Olivier Glippa
  • Heidi Pettersson
  • Pekka Alenius
  • Jonna Engström-Öst
Article

Abstract

We studied changes in sea water pH, temperature and salinity with focus on two depth layers, along the Gulf of Finland (the Baltic Sea) using long-term monitoring data from 1979 to 2015. Data from the most frequently sampled monitoring stations between western and eastern Gulf of Finland were used. The main result of the study reveals that pH has decreased both in surface and deep-water in the western Gulf of Finland with values ranging between −0.005 and −0.008 units year−1. We also demonstrate a rise in temperature (~2 °C) and decrease in salinity (~−0.7 g kg−1) at several stations over the last 36 years. In general, the changes are shown to be more pronounced in the western part of the gulf. This paper also stresses the importance of improving the sampling frequency and quality of monitoring measurements.

Keywords

pH Trends Deep-water Climate change Salinity Temperature 

Notes

Acknowledgments

This work would not have been possible without people involved in the sampling campaigns and we would like to thank them. We also would like to acknowledge Kirsi Järvenmäki, Marja Kauppi, Mirja Leivuori, Maarit Matilainen, Teemu Näykki, Riikka Pöntinen, Mika Raateoja, Maarit Risto, Mika Sarkkinen, Kimmo Tikka and Pentti Välipakka for their help with the methodology as well as Andreas Lindén for statistical advices. The study was supported by the Academy of Finland (project nr. 276947) and Victoriastiftelsen.

References

  1. Ahtiainen, H., Artell, J., Elmgren, R., Hasselström, L., & Håkansson, C. (2014). Baltic Sea nutrient reductions—what should we aim for? Journal of Environmental Management, 145, 9–23.CrossRefGoogle Scholar
  2. Aleksandrov, S. V., Zhigalova, N. N., & Zezera, A. S. (2009). Long-term dynamics of zooplankton in the southeastern Baltic Sea. Russian Journal of Marine Biology, 35(4), 296–304.CrossRefGoogle Scholar
  3. Alenius, P., Myrberg, K., & Nekrasov, A. (1998). The physical oceanography of the Gulf of Finland: a review. Boreal Environment Research, 3, 97–125.Google Scholar
  4. Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fleming-Lehtinen, V., Gustafsson, B. G., et al. (2015). Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biological Reviews. doi: 10.1111/brv.12221.Google Scholar
  5. Andersson, P., Håkansson, B., Håkansson, J., Sahlsten, E., Havenhand, J., Thorndyke, M., & Dupont, S. (2008). Marine acidification—on effects and monitoring of marine acidification in the seas surrounding Sweden. SMHI, Oceanography No 92, Sweden.Google Scholar
  6. Andrejev, O., Myrberg, K., & Lundberg, P. A. (2004). Age and renewal time of water masses in a semi-enclosed basin—application to the Gulf of Finland. Tellus, 56(5), 548–558.Google Scholar
  7. Antsulevitch, A. E., Välipakka, P., & Valovirta, I. (2003). How are the zebra mussels doing in the Gulf of Finland. Proceedings of the Estonian Academy of Sciences, 52(3), 268–283.Google Scholar
  8. Axe, P. (2007). Hydrography and oxygen in the deep basins. HELCOM Baltic Sea Environment Fact Sheets. http://www.helcom.fi/baltic-sea-trends/environment-fact-sheets/. Accessed 21 March 2016.
  9. BACC I Author Team (2008). Assessment of climate change for the Baltic Sea Basin. Berlin: Springer-Verlag.Google Scholar
  10. BACC II Author Team (2015). Second assessment of climate change for the Baltic Sea Basin. New York: Springer-Verlag.Google Scholar
  11. Brutemark, A., Engström-Öst, J., & Vehmaa, A. (2011). Long-term monitoring data reveal pH dynamics, trends and variability in the western Gulf of Finland. Oceanological and Hydrobiological Studies, 40(3), 91–94.CrossRefGoogle Scholar
  12. Caldeira, K., & Wickett, M. E. (2003). Oceanography: anthropogenic carbon and ocean pH. Nature, 425(6956), 365.CrossRefGoogle Scholar
  13. Conley, D. J. (2012). Ecology: save the Baltic Sea. Nature, 486(7404), 463–464.CrossRefGoogle Scholar
  14. Conley, D. J., Humborg, C., Smedberg, E., Rahm, L., Papush, L., Danielsson, Å., et al. (2008). Past, present and future state of the biogeochemical Si cycle in the Baltic Sea. Journal of Marine Systems, 73(3–4), 338–346.CrossRefGoogle Scholar
  15. Crawley, M. J. (2013). The R book, 2nd edition. Wiley-Blackwell.Google Scholar
  16. Fonselius, S., & Valderrama, J. (2003). One hundred years of hydrographic measurements in the Baltic Sea. Journal of Sea Research, 49(4), 229–241.CrossRefGoogle Scholar
  17. GoF Year 2014 Team (2014). Gulf of Finland Year 2014- Assessment.Google Scholar
  18. Grasshoff, K. (1983). Determination of pH. In K. Grasshoff, M. Ehrhardt, & K. Kremling (Eds.), Methods of sea water analysis (pp. 83–97). Weinheim: Verlag Chemie.Google Scholar
  19. Hjalmarsson, S., Wesslander, K., Anderson, L. G., Omstedt, A., Perttilä, M., & Mintrop, L. (2008). Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea. Continental Shelf Research, 28(4–5), 593–601.CrossRefGoogle Scholar
  20. Hoegh-Guldberg, O. (2010). Dangerous shifts in ocean ecosystem function? The ISME Journal, 4, 1090–1092.CrossRefGoogle Scholar
  21. IPCC. (2007). Climate change 2007: the physical science basis. In Solomon et al. (Eds.), Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 1–996). London: Cambridge Univ. Press.Google Scholar
  22. Kabel, K., Moros, M., Porsche, C., Neumann, T., Adolphi, F., Andersen, T. J., et al. (2012). Impact of climate change on the Baltic Sea ecosystem over the past 1,000 years. Nature Climate Change, 2, 871–874.CrossRefGoogle Scholar
  23. Kahma, K.K., & Voipio, A. (1990). Elimination of seasonal variation from long-term changes of some nutrients in the Baltic Sea. Finnish Marine Research, 257, 3–14.Google Scholar
  24. Kjellström, E., & Ruosteenoja, K. (2007). Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Climatic Change, 81(1), 281–291.CrossRefGoogle Scholar
  25. Koroleff, F. (1979). Methods for the chemical analysis of seawater. Meri, 7, 15–16.Google Scholar
  26. Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., et al. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology, 19(6), 1884–1896.CrossRefGoogle Scholar
  27. Kuliński, K., Schneider, B., Hammer, K., Machulik, U., & Schulz-Bull, D. (2014). The influence of dissolved organic matter on the acid–base system of the Baltic Sea. Journal of Marine Systems, 132, 106–115.CrossRefGoogle Scholar
  28. Launiainen, J., & Koljonen, J. (1982). Variation of salinity at Finnish fixed hydrographic stations in the Gulf of Finland and the river runoff to the Baltic Sea. Meri, 11, 39–50.Google Scholar
  29. Lehmann, A., Getzlaff, K., & Harlaß, J. (2011). Detailed assessment of climate variability of the Baltic Sea area for the period 1958–2009. Climate Research, 46(2), 185–196.CrossRefGoogle Scholar
  30. Löffler, A., Schneider, B., Perttilä, M., & Rehder, G. (2012). Air–sea CO2 exchange in the Gulf of Bothnia, Baltic Sea. Continental Shelf Research, 37, 46–56.CrossRefGoogle Scholar
  31. McDougall, T. J., Jackett, D. R., Millero, F. J., Pawlowicz, R., & Barker, P. M. (2012). A global algorithm for estimating absolute salinity. Ocean Science, 8(6), 1123–1134.CrossRefGoogle Scholar
  32. Meier, M., Kjellström, E., & Graham, P. (2006). Estimating uncertainties of projected Baltic Sea salinity in the late 21st century. Geophysical Research Letters, 33, L15705. doi: 10.1029/2006GL026488.CrossRefGoogle Scholar
  33. Merkouriadi, I., & Leppäranta, M. (2014). Long-term analysis of hydrography and sea-ice data in Tvärminne, Gulf of Finland, Baltic Sea. Climate Change, 124(4), 849–859.CrossRefGoogle Scholar
  34. Mohrholz, V., Naumann, M., Nausch, G., Krüger, S., & Gräwe, U. (2015). Fresh oxygen for the Baltic Sea—an exceptional saline inflow after a decade of stagnation. Journal of Marine Systems, 148, 152–166.CrossRefGoogle Scholar
  35. Müller, J. D., Schmeider, B., & Rehder, G. (2016). Long-term alkalinity trends in the Baltic Sea and their implications for CO2-induces acidification. Limnology and Oceanography, 61(6), 1984–2002.CrossRefGoogle Scholar
  36. Myrberg, K., Ryabchenko, V., Isaev, A., Vankevich, R., Andrejev, O., Bendtsen, J., et al. (2010). Validation of three-dimensional hydrodynamic models of the Gulf of Finland. Boreal Environmental Research, 15(5), 453–479.Google Scholar
  37. National Board of Waters (1981). Vesiviranomaisen käyttämät analyysimenetelmät. National Board of Waters, Helsinki, Report 213, (in Finnish).Google Scholar
  38. Ojaveer, H., Jaanus, A., MacKenzie, B. R., Martin, G., Olenin, S., Radziejewska, et al. (2010). Status of biodiversity in the Baltic Sea. PloS One. doi: 10.1371/journal.pone.0012467.Google Scholar
  39. Omstedt, A., Edman, M. O. A., Anderson, L. G., & Laudon, H. (2010). Factors influencing the acid–base (pH) balance in the Baltic Sea: a sensitivity analysis. Tellus B, 62(4), 280–295.CrossRefGoogle Scholar
  40. Omstedt, A., Humborg, C., Pempkowiak, J., Perttilä, M., Rutgersson, A., Schneider, B., & Smith, B. (2014). Biogeochemical control of the coupled CO2–O2 system of the Baltic Sea: a review of the results of Baltic-C. Ambio, 43(1), 49–59.CrossRefGoogle Scholar
  41. Perttilä, M. (2012). Marine carbon dioxide. In I. Haapala (Ed.), From the Earthʼs Core to outer space (pp. 163–170). Berlin: Springer.CrossRefGoogle Scholar
  42. Ruuskanen, A., & Bäck, S. (1999). Morphological variation of northern Baltic Sea Fucus vesiculosus L. Ophelia, 50(1), 43–59.CrossRefGoogle Scholar
  43. Soomere, T., Leppäranta, M., & Myrberg, K. (2009). Highlights of the physical oceanography of the Gulf of Finland reflecting potential climate changes. Boreal Environmental Research, 14(1), 152–165.Google Scholar
  44. Suikkanen, S., Pulina, S., Engström-Öst, J., Lehtiniemi, M., Lehtinen, S., & Brutemark, A. (2013). Climate change and eutrophication induced shifts in northern summer plankton communities. PloS One. doi: 10.1371/journal.pone.0066475.Google Scholar
  45. Sunda, W. G., & Cai, W.-J. (2012). Eutrophication induced CO2-acidification of subsurface coastal waters: interactive effects of temperature, salinity, and atmospheric pCO2. Environmental Science & Technology, 46(19), 10651–10659.CrossRefGoogle Scholar
  46. SYKE (2016). The Gulf of Finland assessment. Reports of the Finnish environment institute 27. https://helda.helsinki.fi/handle/10138/166296. Accessed 14 November 2016
  47. Tockner, K., Uehlinger, U., & Robinson, C. T. (2009). Rivers of Europe. London: Academic Press.Google Scholar
  48. Tyrrell, T., Schneider, B., Charalampopoulou, A., & Riebesell, U. (2008). Coccolithophores and calcite saturation state in the Baltic and Black Seas. Biogeosciences, 5(2), 485–494.CrossRefGoogle Scholar
  49. Vihma, T., & Haapala, J. (2009). Geophysics of sea ice in the Baltic Sea: a review. Progress in Oceanography, 80(3–4), 129–148.CrossRefGoogle Scholar
  50. Vuorinen, I., Hänninen, J., Rajasilta, M., Laine, P., Eklund, J., Montesino-Pouzols, F., et al. (2015). Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas–implications for environmental monitoring. Ecological Indicators, 50, 196–205.CrossRefGoogle Scholar
  51. Wesslander, K. (2011). The carbon dioxide system in the Baltic Sea surface waters. PhD thesis, University of Gothenburg, Göteborg.Google Scholar
  52. Wesslander, K., Omstedt, A., & Schneider, B. (2010). Inter-annual and seasonal variations in the air–sea CO2 balance in the Central Baltic Sea and the Kattegat. Continental Shelf Research, 30(14), 1511–1521.CrossRefGoogle Scholar
  53. Ylöstalo, P., Seppälä, J., Kaitala, S., Maunula, P., & Simis, S. (2016). Loadings of dissolved organic matter and nutrients from the Neva River into the Gulf of Finland—biogeochemical composition and spatial distribution within the salinity gradient. Marine Chemistry, 186, 58–71.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Anna-Karin Almén
    • 1
    • 2
  • Olivier Glippa
    • 2
  • Heidi Pettersson
    • 3
  • Pekka Alenius
    • 3
  • Jonna Engström-Öst
    • 2
  1. 1.Environmental and Marine Biology, Faculty of Science and EngineeringÅbo Akademi UniversityÅboFinland
  2. 2.Novia University of Applied SciencesEkenäsFinland
  3. 3.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations