Skip to main content
Log in

Synechococcus production and grazing loss rates in nearshore tropical waters

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3–2.3 × 105 cell ml−1) was always higher than at Port Klang (0.3–7.1 × 104 cell ml−1) (p < 0.001). μ ranged up to 0.98 day−1 (0.51 ± 0.29 day−1), while g ranged from 0.02 to 0.31 day−1 (0.15 ± 0.07 day−1) at Port Klang. At Port Dickson, μ and g averaged 0.47 ± 0.13 day−1 (0.29–0.82 day−1) and 0.31 ± 0.14 day−1 (0.13–0.63 day−1), respectively. Synechococcus abundance did not correlate with temperature (p > 0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi − 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p < 0.05). As for grazing loss rates, they were independent of either nutrients or light intensity (p > 0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agawin, N. S. R., Duarte, C. M., & Agustí, S. (2000a). Nutrient and temperature control of picoplankton to phytoplankton biomass and production. Limnology and Oceanography, 45, 591–600.

    Article  CAS  Google Scholar 

  • Agawin, N. S. R., Duarte, C. M., & Agustí, S. (2000b). Response of Mediterranean Synechococcus growth and loss to experimental nutrient inputs. Marine Ecology Progress Series, 206, 97–106.

    Article  Google Scholar 

  • Agawin, N. S. R., Duarte, C. M., Agustí, S., & Macmanus, L. (2003). Abundance, biomass and growth rates of Synechococcus sp. in a tropical coastal ecosystem (Philippines, South China Sea). Estuarine, Coastal and Shelf Science, 56, 493–502.

    Article  Google Scholar 

  • Blanchot, J., André, J. M., Navarette, C., Neveux, J., & Radenac, M. H. (2001). Picophytoplankton in the equatorial Pacific: vertical distributions in the warm pool and in the high nutrient low chlorophyll conditions. Deep-Sea Research I, 48, 297–314.

    Article  Google Scholar 

  • Chang, J., Lin, K. H., Chen, K. M., Gong, G. C., & Chiang, K. P. (2003). Synechococcus growth and mortality rates in the East China Sea: range of variations and correlation with environmental factors. Deep-Sea Research II, 50, 1265–1278.

    Article  Google Scholar 

  • Chen, B. Z., Liu, H. B., Landry, M. R., Dai, M. H., Huang, B. Q., & Sun, J. (2009). Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnology and Oceanography, 54(4), 1084–1097.

    Article  CAS  Google Scholar 

  • Chen, B. Z., Wang, L., Song, S. Q., Huang, B. Q., Sun, J., & Liu, H. B. (2011). Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea. Continental Shelf Research, 31, 1527–1540.

    Article  Google Scholar 

  • Chiang, K. P., Kuo, M. C., Chang, J., Wang, R. H., & Gong, G. C. (2002). Spatial and temporal variation of the Synechococcus population in the East China Sea and its contribution to phytoplankton biomass. Continental Shelf Research, 22, 3–13.

    Article  Google Scholar 

  • Grasshoff, K., Kremling, K., & Ehrhardt, M. (1999). Methods of seawater analysis (3rd ed.). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (2007). Climate change: the physical science basis. Contribution of Working Group I to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Landry, M. R., & Hassett, R. P. (1982). Estimating the grazing impact of marine micro-zooplankton. Marine Biology, 67, 283–288.

    Article  Google Scholar 

  • Lee, C. W., & Bong, C. W. (2008). Bacterial abundance and production, and their relation to primary production in tropical coastal waters of Peninsular Malaysia. Marine & Freshwater Research, 59, 10–21.

    Article  CAS  Google Scholar 

  • Lee, C. W., Bong, C. W., Mohamed Yusoff, M. A., & Alias, S. A. (2005). Bacteria-mediated carbon flux in mangrove waters: a Malaysian perspective. International Journal of Ecology and Environmental Sciences, 31(3), 203–211.

    Google Scholar 

  • Lee, C. W., Bong, C. W., Ng, C. C., & Siti-Aisyah, A. (2006). Factors affecting variability of heterotrophic and phototrophic microorganisms at high water in a mangrove forest at Cape Rachado, Malaysia. Malaysian Journal of Science, 25(2), 55–66.

    CAS  Google Scholar 

  • Lee, C. W., Bong, C. W., & Hii, Y. S. (2009). Temporal variation of bacterial respiration and growth efficiency in tropical coastal waters. Applied and Environmental Microbiology, 75, 7594–7601.

    Article  CAS  Google Scholar 

  • Lee, C. W., Lim, J. H., & Heng, P. L. (2013). Investigating the spatial distribution of phototrophic picoplankton in a tropical estuary. Environmental Monitoring and Assessment, 185, 9697–9704.

    Article  CAS  Google Scholar 

  • Lim, J. H., Lee, C. W., & Kudo, I. (2015). Temporal variation of phytoplankton growth and grazing loss in the west coast of Peninsular Malaysia. Environmental Monitoring and Assessment, 187, 246.

    Article  Google Scholar 

  • Lindell, D., Penno, S., Al-Qutob, M., David, E., Korpal, T., Kazar, B., & Post, A. F. (2005). Expression of the nitrogen-stress response gene ntcA reveals nitrogen-sufficient Synechococcus populations in the oligatrophic northern Red Sea. Limnology and Oceanography, 50, 1932–1994.

    Article  CAS  Google Scholar 

  • Liu, H. B., Chang, J., Tseng, C. M., Wen, L. S., & Liu, K. K. (2007). Seasonal variability of picoplankton in the Northern South China Sea at the SEATS station. Deep-Sea Research II, 54, 1602–1616.

    Article  Google Scholar 

  • Mackey, K. R. M., Rivlin, T., Grossman, A. R., Post, A. F., & Paytan, A. (2009). Picophytoplankton responses to changing nutrient and light regimes during a bloom. Marine Biology, 156, 1531–1546.

    Article  Google Scholar 

  • Ning, X. R., Cloern, J. E., & Cole, B. E. (2000). Spatial and temporal variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limnology and Oceanography, 45(3), 695–702.

    Article  CAS  Google Scholar 

  • Pagano, M., Champalbert, G., Aka, M., Kouassi, E., Arfi, R., Got, P., Troussellier, M., N’Dour, E. H., Corbin, D., & Bouvy, M. (2006). Herbivorous and microbial grazing pathways of metazooplankton in the Senegal River Estuary (West Africa). Estuarine, Coastal and Shelf Science, 67, 369–381.

    Article  Google Scholar 

  • Palenik, B. (2001). Chromatic adaptation in marine Synechococcus strains. Applied and Environmental Microbiology, 67(2), 991–994.

    Article  CAS  Google Scholar 

  • Parsons, T. R., Maita, Y., & Lalli, C. M. (1984). A manual of chemical and biological methods for seawater analysis. Oxford: Pergamon Press.

    Google Scholar 

  • Pomeroy, L. R., & Wiebe, W. J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology, 23, 187–204.

    Article  Google Scholar 

  • Raven, J. A. (1998). Small is beautiful: the picophytoplankton. Functional Ecology, 12, 503–513.

    Article  Google Scholar 

  • Schubert, H., Sagert, S., & Forster, R. M. (2001). Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgoland Marine Research, 55, 12–22.

    Article  Google Scholar 

  • Sin, Y., & Wetzel, R. L. (2002). Ecosystem modeling analysis of size-structured phytoplankton dynamics in the York River estuary, Virginia (USA). II. Use of a plankton ecosystem model for investigating controlling factors on phytoplankton and nutrient dynamics. Marine Ecology Progress Series, 228, 91–101.

    Article  CAS  Google Scholar 

  • Winder, M. (2009). Photosynthetic picoplankton dynamics in Lake Tahoe: temporal and spatial niche partitioning among prokaryotic and eukaryotic cells. Journal of Plankton Research, 31(11), 1307–1320.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Malaya for the grants (UM.C/625/1/HIR/050 and RP019A-16SUS) that supported this work. We also thank the Ministry of Science, Technology and Innovation for the eScience grant (04-01-03-SF0671) and the Ministry of Education for the HiCoE grant (IOES-2014D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Weng Lee.

Electronic supplementary material

ESM 1

(DOCX 46 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, P.L., Lim, J.H. & Lee, C.W. Synechococcus production and grazing loss rates in nearshore tropical waters. Environ Monit Assess 189, 117 (2017). https://doi.org/10.1007/s10661-017-5838-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5838-1

Keywords

Navigation