Skip to main content
Log in

Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The physicochemical properties of the 24 modified clinoptilolite samples and their ammonia-nitrogen removal rates were measured to investigate the correlation between them. The modified clinoptilolites obtained by acid modification, alkali modification, salt modification, and thermal modification were used to adsorb ammonia-nitrogen. The surface area, average pore width, macropore volume, mecropore volume, micropore volume, cation exchange capacity (CEC), zeta potential, silicon-aluminum ratios, and ammonia-nitrogen removal rate of the 24 modified clinoptilolite samples were measured. Subsequently, the linear regression analysis method was used to research the correlation between the physicochemical property of the different modified clinoptilolite samples and the ammonia-nitrogen removal rate. Results showed that the CEC was the major physicochemical property affecting the ammonia-nitrogen removal performance. According to the impacts from strong to weak, the order was CEC > silicon-aluminum ratios > mesopore volume > micropore volume > surface area. On the contrary, the macropore volume, average pore width, and zeta potential had a negligible effect on the ammonia-nitrogen removal rate. The relational model of physicochemical property and ammonia-nitrogen removal rate of the modified clinoptilolite was established, which was ammonia-nitrogen removal rate = 1.415[CEC] + 173.533 [macropore volume] + 0.683 [surface area] + 4.789[Si/Al] – 201.248. The correlation coefficient of this model was 0.982, which passed the validation of regression equation and regression coefficients. The results of the significance test showed a good fit to the correlation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdul-Wahaba, S. A., Bakheit, C. S., & Al-Alawi, S. M. (2005). Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environmental Modelling & Software, 20, 1263–1271.

    Article  Google Scholar 

  • Antoniou, M. K., Diamanti, E. K., Enotiadis, A., Policicchio, A., Dimos, K., Ciuchi, F., Maccallini, E., Gournis, D., & Agostino, R. G. (2014). Methane storage in zeolite-like carbon materials. Micropor. Mesopor. Mater., 188, 16–22.

    Article  CAS  Google Scholar 

  • Banerjee, T., Singh, S. B., & Srivastava, R. K. (2011). Development and performance evaluation of statistical models correlating air pollutants and meteorological variables at Pantnagar, India. Atmos. Res., 99, 505–517.

  • Blasioli, S., Martucci, A., Paul, G., Gigli, L., Cossi, M. C., Johnston, T., Marchese, L., & Braschi, I. (2014). Removal of sulfamethoxazole sulfonamide antibiotic from water by high silica zeolites: a study of the involved host–guest interactions by a combined structural, spectroscopic, and computational approach. Journal of Colloid and Interface Science, 419, 148–159.

    Article  CAS  Google Scholar 

  • Favvas, E. P., Tsanaktsidis, C. G., Sapalidis, A. A., Tzilantonis, G. T., Papageorgiou, S. K., & Mitropoulos, A. C. (2016). Clinoptilolite, a natural zeolite material: structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Micropor. Mesopor. Mater., 225, 385–391.

    Article  CAS  Google Scholar 

  • Figueroa-Torres, G. M., Certucha-Barragán, M. T., Acedo-Félix, E., Monge-Amaya, O., Almendariz-Tapia, F. J., & Gasca-Estefanía, L. A. (2016). Kinetic studies of heavy metals biosorption by acidogenic biomass immobilized in clinoptilolite. J. Taiwan Institute Chem. Eng., 61, 241–246.

    Article  CAS  Google Scholar 

  • Golchoubian, H., & Rezaee, E. (2013). Synthesis, characterization and solvatochromism studies of two new mixed-chelate copper(II) complexes containing b-ketoamine and diamine ligands. Polyhedron, 55, 162–168.

    Article  CAS  Google Scholar 

  • Guaya, D., Hermassi, M., Valderrama, C., Farran, A., & Cortina, J. L. (2016). Recovery of ammonium and phosphate from treated urban wastewater by using potassium clinoptilolite impregnated hydrated metal oxides as NPK fertilizer. Journal of Environmental Chemical Engineering, 4, 3519–3526.

    Article  CAS  Google Scholar 

  • Helguera, A. M., Cordeiro, M. N. D. S., Pérez, M. Á. C., Combes, R. D., & González, M. P. (2007). Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds. Toxicology and Applied Pharmacology, 221, 189–202.

    Article  CAS  Google Scholar 

  • Hernandez, L., Probst, A., Probst, J. L., & Ulrich, E. (2003). Heavy metal distribution in some French forest soils: evidence for atmospheric contamination. The Science of the Total Environment, 312, 195–219.

    Article  CAS  Google Scholar 

  • Humplik, T., Raj, R., Maroo, S. C., Laoui, T., & Wang, E. N. (2014). Framework water capacity and infiltration pressure of MFI zeolites. Micropor. Mesopor. Mater., 190, 84–91.

    Article  CAS  Google Scholar 

  • Kuzniatsova, T., Kim, Y., Shqau, K., Dutta, P. K., & Verweij, H. (2007). Zeta potential measurements of zeolite Y: application in homogeneous deposition of particle coatings. Micropor. Mesopor. Mater., 103, 102–107.

    Article  CAS  Google Scholar 

  • Li, X., Li, B. S., & Xu, J. Q. (2013). Synthesis and characterization of transitional metal-rich zeolite M-MFI (M = Fe, Co, Ni, Cu) with regular mesoporous channels. Colloid Surf. A-Physicochem. Eng. Asp., 434, 287–295.

    Article  CAS  Google Scholar 

  • Markou, G., Vandamme, D., & Muylaert, K. (2014). Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresource Technology, 155, 373–378.

    Article  CAS  Google Scholar 

  • Triantafyllidis, K. S., Nalbandian, L., Trikalitis, P. N., Ladavos, A. K., Mavromoustakos, T., & Nicolaides, C. P. (2003). Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials. Micropor. Mesopor. Mater., 75, 89–100.

    Article  Google Scholar 

  • Ursini, O., Lilla, E., & Montanari, R. (2006). The investigation on cationic exchange capacity of zeolites: the use as selective ion trappers in the electrokinetic soil technique. Journal of Hazardous Materials, 137, 1079–1088.

    Article  CAS  Google Scholar 

  • Uyanik, G. K., & Güler, N. (2013). A study on multiple linear regression analysis. Procedia - Soc. Behav. Sci., 106, 234–240.

    Article  Google Scholar 

  • Uzunova, E. L., & Mikosch, H. (2016). Adsorption of phosphates and phosphoric acid in zeolite clinoptilolite: electronic structure study. Micropor. Mesopor. Mater., 232, 119–125.

    Article  CAS  Google Scholar 

  • Václavík, M., Dudák, M., Novák, V., Medlín, R., Štěpánek, F., Marek, M., & Kočí, P. (2014). Yeast cells as macropore bio-templates enhancing transport properties and conversions in coated catalyst layers for exhaust gas oxidation. Chemical Engineering Science, 116, 342–349.

    Article  Google Scholar 

  • Wang, S. B., & Peng, Y. L. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11–24.

    Article  CAS  Google Scholar 

  • Xiao, F., Gulliver, J. S., & Simcik, M. F. (2013). Predicting aqueous solubility of environmentally relevant compounds from molecular features: a simple but highly effective four-dimensional model based on project to latent structures. Water Research, 47, 5362–5370.

    Article  CAS  Google Scholar 

  • Yu, X., Zuo, J. N., Li, R. X., Gan, L. L., Li, Z. X., & Zhang, F. (2014). A combined evaluation of the characteristics and acute toxicity of antibiotic wastewater. Ecotox. Environ. Safe., 106, 40–45.

    Article  CAS  Google Scholar 

  • Zhan, X. H., Liang, X., Xu, G. H., & Zhou, L. X. (2013). Influence of plant root morphology and tissue composition on phenanthrene uptake: stepwise multiple linear regression analysis. Environmental Pollution, 179, 294–300.

    Article  CAS  Google Scholar 

  • Zhu, H. C., Guo, W. M., Shen, Z. M., Tang, Q. L., Ji, W. C., & Jia, L. J. (2014). QSAR models for degradation of organic pollutants in ozonation process under acidic condition. Chemosphere, 119, 65–71.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51174017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Lin, H. & He, Y. Correlation between physicochemical properties of modified clinoptilolite and its performance in the removal of ammonia-nitrogen. Environ Monit Assess 189, 107 (2017). https://doi.org/10.1007/s10661-017-5806-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5806-9

Keywords

Navigation