Skip to main content
Log in

Mercury in soil, earthworms and organs of voles Myodes glareolus and shrew Sorex araneus in the vicinity of an industrial complex in Northwest Russia (Cherepovets)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The characteristic properties of uptake and distribution of mercury in terrestrial ecosystems have received much lesser attention compared to aquatic particularly in Russia. Terrestrial ecosystems adjacent to large industrial manufactures—potential sources of mercury inflow into the environment frequently remain unstudied. This is the first report on mercury (Hg) levels in the basic elements of terrestrial ecosystems situated close to a large metallurgical complex.

Mean values of mercury concentration (mg Hg/kg dry weight) in the vicinity of city of Cherepovets were the following: 0.056 ± 0.033—in the humus layer of soil; 0.556 ± 0.159—in earthworms; in the organs of voles Myodes glareolus (kidneys—0.021 ± 0.001; liver—0.014 ± 0.003; muscle—0.014 ± 0.001; brain—0.008 ± 0.002); in the organs of shrew Sorex araneus (kidneys—0.191 ± 0.016; liver—0.124 ± 0.011; muscle—0.108 ± 0.009; brain—0.065 ± 0.000). Correlation dependences between Hg content in soil and earthworms (r s  = 0.85, p < 0.01) as well as soil and all studied shrews’ organs (rs = 0.44–0.58; p ≤ 0.01) were found.

The results obtained evidence for a strong trophic link in the bioaccumulation of Hg in terrestrial food webs. Despite the vicinity to a large metallurgical complex, mercury content in the studied objects was significantly lower than values of corresponding parameters in the soils and biota from industrial (polluted) areas of Great Britain, the USA, and China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, T. J., Barrett, G. W., Clark, C. S., Elia, V. J., & Majeti, V. A. (1982). Metal concentrations in tissues of meadow voles from sludgetreated fields. Journal of Environmental QualityJ Environ Qual, 11, 272–277.

    Article  CAS  Google Scholar 

  • Bespamiatnov, G. P., Krotov, I. A. (1985). Predelno dopustimye koncentratcii himicheskikh veshchestv v okruzhaiushchei’ srede [Maximum allowable concentrations of chemicals in the environment]. Leningrad: Nauka. 528.

  • Brewer, S. R., & Barrett, G. W. (1995). Heavy metal concentrations in earthworms following long-term nutrient enrichment. Bulletin of Environmental Contamination and Toxicology, 54, 120–127.

    Article  CAS  Google Scholar 

  • Bull, K. R., Roberts, R. D., Inskip, M. J., & Goodman, G. T. (1977). Mercury concentrations in soil, grass, earthworms and small mammals near an industrial emission source. Environmental Pollution, 12, 135–140.

    Article  Google Scholar 

  • Burbacher, T. M., Rodier, P. M., & Weiss, B. (1990). Methylmercury developmental neurotoxicity: a comparison of effects in humans and animals. Neurotoxicology and Teratology, 12, 191–202.

    Article  CAS  Google Scholar 

  • Cristol, D., Brasso, R. L., Condon, A. M., Fovargue, R. E., Friedman, S. L., Hallinger, K. K., Manroe, A. P., & White, A. E. (2008). The movement of aquatic mercury through terrestrial food webs. Science, 335. doi:10.1126/science.320.5874.389b.

  • Gerstenberger, S. L., Cross, C. L., Divine, D. D., Gulmatico, M. L., Rothweiler, A. M. (2006). Assessment of Mercury Concentrations in Small Mammals Collected Near Las Vegas, Nevada, USA. Environmental Toxicology. 583–589. doi:10.1002/tox.

  • Giliarov, M. S., Striganova, B. R. (1978). Rol’ pochvenny’kh bespozvonochny’kh v razlozhenii rastitel’ny’kh ostatkov i krugovorote veshchestv [Role of edaphic invertebrates in the decomposition of vegetative debris in the cycle of matter]. In: Itogi nauki i tekhniki. Zoologiia bespozvonochny’kh, 5 (8–69). Moskow: VINITI.

  • Haines, T. A., Komov, V. T., & Jagoe, C. H. (1992). Lake acidity and mercury content of fish in Darwin National Reserve, Russia. Environmental Pollution, 78, 107–112.

    Article  CAS  Google Scholar 

  • Hunter, B. A., Johnson, M. S., & Thompson, D. J. (1987). Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. Journal of Applied Ecology, 24, 601–614.

    Article  CAS  Google Scholar 

  • Ivanter, E’. V. (2008). Mlekopitaiushchie Karelii. [Mammals of Karelia]. Izd-vo PetrGU: Petrozavodsk. 292.

  • Kaplan, I., Lu, S., Lee, R., & Warrick, G. (1996). Polycyclic hydrocarbon biomarkers confirm selective incorporation of petroleum in soil and kangaroo rat liver samples near an oil well blowout site in the western San Joaquin Valley California. Environmental Toxicology and Chemistry, 15, 696–707.

    Article  CAS  Google Scholar 

  • Komov, V. T., Stepina, E. S., Gremiachikh V. A., Poddubnaya N. Ya., Borisov M. Ya. (2012). Soderzhanie rtuti v organakh hishchny’kh mlekopitaiushchikh semei’stva kun’I (Mustelidae) Vologodskoi` oblasti [Mercury concentration in the organs of predatory mammals from fam. Mustelidae]. Povolzhskii’ e’kologicheskii’ zhurnal, 4, 385–393.

  • Li, Y. H., Sohrin, Y., & Takamatsu, T. (2010). Lake Biwa and the ocean: geochemical similarity and difference. Limnology, 12(1), 89–101.

    Article  Google Scholar 

  • Ma, W. C. (1994). Methodological principles of using small mammals for ecological hazard assessment of chemical pollution, with examples on cadmium and lead. In M. H. Donker, H. Eijsackers, & F. Heimbach (Eds.), Ecotoxicology of soil organisms (pp. 357–372). Boca Raton (FL): Lewis Publishers.

    Google Scholar 

  • Morgan, J. E., Morgan, A. J., Corp, N. (1992). Assessing soil metal pollution with earthworms: Indices derived from regression analysis. In: Greig-Smith, P. W., Becker, H., Edwards, P. J., Heimbach, F. (Eds), Ecotoxicology of earthworms (233–237). Andover, Hants: Intercept Press.

  • Mukherjee, A. B. (1999). Advanced technology available for the abatement of mercury pollution in the metallurgical industry. In: R. Ebinghaus, R.R. Turner, L.D. de Lakerda et al. (Eds.), Mercury contaminated sites: Characterization, risk assessment and remediation (pp. 131–142). Springer Verlag: Berlin, Heidelberg.

  • Reinecke, A. J., Reinecke, S. A. (1998). Toxicity endpoints for and accumulation of cadmium and lead in Eisenia fetida (Oligochaeta). In: Sheppard, S., Bembridge, J., Holmstrup, M., Posthuma, L. (Eds), Advances in earthworm ecotoxicology. Pensacola, FL: Setac Press.

  • Rieder, S., Brunner, I., Horvat, M., Jacobs, A., & Frey, B. (2011). Accumulation of mercury and methylmercury by mushrooms and earhworms from forest soil. Environmental Pollution, 159(10), 2861–2869.

    Article  CAS  Google Scholar 

  • Sánchez-Chardi, A., Ribeiro, C. A., & Nadal, J. (2009). Metals in liver and kidneys and theeffects of chronic exposure to pyrite mine pollution in the shrew Crocidura russula inhabiting the protected wetland of Donana. Chemosphere, 76, 387–394.

    Article  Google Scholar 

  • Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36(1), 12–18.

    Article  CAS  Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1995). Biometry. The principals and practice of statistics in biological research. NY: Freeman and Co. 887.

  • Stein, E. D., Cohen, Y., & Winer, A. M. (1996). Environmental distribution and transformation of mercury compounds. Critical Reviews in Environmental Science and Technology, 26(1), 1–43.

    Article  CAS  Google Scholar 

  • Stepanova, I. K., & Komov, V. T. (1997). Mercury accumulation in fish from water bodies of the Vologodskaya oblast. Russian Journal of Ecology, 28(4), 260–265.

    Google Scholar 

  • Stepanova, I. K., & Komov, V. T. (1996). Mercury in abiotic and biotic components of lakes of northwestern Russia. Russian Journal of Ecology, 27(3), 188–193.

    Google Scholar 

  • Stepina, E. S. (2010). Soderzhanie rtuti v tkaniakh i organakh mlekopitaiushchikh Vologodskoi’ oblasti [Mercury concentration in tissues and organs of mammals from the Vologda region]. Rtut‛ v biosfere: e’kologo-geohimicheskie aspekty’: Materialy’ Mezhdunar. simpoziuma (Moskva, 7–9 September 2010) (309–311). Moscow: GEOKHI RAN.

  • Talmage, S. S., Walton, B. T. (1990). Comparative evalution of several small mammal species an monitors of heavy metals, radionuclides, and selected organic compounds in the environment. Environmental Sciences Division Publication #3534. Office of Environmental Restoration and Water Management, United States Department of Energy.

  • Talmage, S. S., & Walton, B. T. (1991). Small mammals as monitors of environmental contaminants. Reviews of Environmental Contamination and Toxicology, 119, 47–145.

    CAS  Google Scholar 

  • Taylor, G. N., Jones, C. W., Gardner, P. A., Lloyd, R. D., Mays, C. W., & Charrier, K. E. (1981). Two new rodent models for actinide toxicity studies. The Journal of Radiation Research, 86, 115–122.

    Article  CAS  Google Scholar 

  • Ulfvarson, U. (1970). Transportation of Mercury in Animals. Stockholm, Sweden: Arbets-medicinska institutet. 63.

  • UNEP. (2008). Technical background report to the global atmospheric mercury assessment. Arctic Monitoring and Assessment Programme/UNEP Chemicals Branch, 1–159.

  • Vucetich, L. M., Vucetich, J. A., & Cleckner, L. B. (2001). Mercury concentration in deer mouse (Peromyceus maniculatus) tissues from isle Royale National Park. Environmental Pollution, 114, 113–118.

    Article  CAS  Google Scholar 

  • Wiener, J. G., Krabbenhoft, D. P., Heinz, G. H., Scheuhammer, A. M. (2003). Ecotoxicology of Mercury. In: Hoffman, D. J., Rattner, B. A., Burton, G. A., Cairns, J. (Eds), Handbook of Ecotoxicology, 2nd edn., (pp. 1–32). Boca Raton (FL), C.R.C. Press.

  • Wilson, S.J., Steenhuisen, F., Pacyna, J.M., Pacyna, E.G. (2006). Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories // Atmospheric Environment. V. 40, №24. P. 4621–4632.

  • Wolfe, M. F., Schwarzbach, S., & Sulaiman, R. A. (1988). Effects of mercury on wildlife: a comprehensive review. Environmental Toxicology and Chemistry, 7, 146–160.

    Google Scholar 

  • Zhang, S. Z. (2009). Bioaccumulation of total and methyl mercury in three earthworm species (Drawida sp., Allolobophora sp., and Limnodrilus sp.). Bulletin of Environmental Contamination and Toxicology, 83, 937–942.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support is from the Program on Biological Resources of Russian Federation RAS. Dr. Christopher Robinson and Dmitri D. Pavlov have helped with the English version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.T. Komov.

Electronic supplementary material

.

ESM 1

(PDF 415 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komov, V., Ivanova, E., Poddubnaya, N. et al. Mercury in soil, earthworms and organs of voles Myodes glareolus and shrew Sorex araneus in the vicinity of an industrial complex in Northwest Russia (Cherepovets). Environ Monit Assess 189, 104 (2017). https://doi.org/10.1007/s10661-017-5799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5799-4

Keywords

Navigation