Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010—can the efficiency of undertaken water protection measures seen?

Abstract

Long-term data from a network of intensively monitored research catchments in Finland was analysed. We studied temporal (1981–2010) and spatial variability in nitrogen (N) and phosphorus (P), from 1987 losses, both from agricultural and forestry land. Based on trend analysis, total nitrogen (TN) concentrations increased in two of the four agricultural sites and in most of the forested sites. In agricultural catchments, the total phosphorus (TP) trends were decreasing in two of the four catchments studied. Dissolved P (DRP) concentrations increased in two catchments and decreased in one. The increase in DRP concentration can be a result of reducing erosion by increased non-plough cultivation and direct sowing. In forested catchments, the TP trends in 1987–2011 were significantly decreasing in three of the six catchments, while DRP concentrations decreased significantly in all sites. At the same time, P fertilisation in Finnish forests has decreased significantly, thus contributing to these changes. The mean annual specific loss for agricultural land was on average 15.5 kg ha−1 year−1 for N and 1.1 kg ha−1 year−1 for P. In the national scale, total TN loading from agriculture varied between 34,000–37,000 t year−1 and total P loading 2400–2700 t year−1. These new load estimates are of the same order than those reported earlier, emphasising the need for more efforts with wide-ranging and carefully targeted implementation of water protection measures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Aakkula, J., Leppänen, J. (Eds.).(2014). Maatalouden ympäristötuen vaikuttavuuden seurantatutkimus (MYTVAS 3). Maa- ja metsätalousministeriö 3/2014. 265 p. [In Finnish].

  2. Ahtiainen, M., & Huttunen, P. (1999). Long-term effects of forestry managements on water quality and loading in brooks. Boreal Environment Research, 4, 101–114.

    CAS  Google Scholar 

  3. Berninger, K., Koskiaho, J., & Tattari, S. (2012). Constructed wetlands in Finnish agricultural environments : balancing between effective water protection, multi-functionality and socio-economy. Journal of Water and Land Development, 17, 19–29.

    Article  Google Scholar 

  4. Blombäck, K., Børgesen, CD., Eckersten, H., Giełczewski, M., Piniewski, M., Sundin, S., Tattari, S. & Väisänen, S..(2012). Productive agriculture adapted to reduced nutrient losses in future climate - Model and stakeholder based scenarios of Baltic Sea catchments. Baltic COMPASS–report. http://www.balticcompass.org/_blog/Project_Reports/post/future-nutrient-load-scenarios/. Accessed 1 June 2016.

  5. Børgesen, C. D., & Olesen, J. (2011). A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark. Natural Hazards and Earth System Sciences, 11(9), 2541–2553.

    Article  Google Scholar 

  6. Collins, A. L., Zhang, Y. S., Winter, M., Inman, A., Jones, J. I., Johnes, P. J., Cleasby, W., Vrain, E., Lovett, A., & Noble, L. (2016). Tackling agricultural diffuse pollution: what might uptake of farmer-preferred measures deliver for emissions to water and air? Science of Total Environment, 547, 269–281.

    CAS  Article  Google Scholar 

  7. Ekholm, P., Jaakkola, E., Kiirikki, M., Lahti, K., Lehtoranta, J., Mäkelä, V., Näykki, T., Pietola, L., Tattari, S., Valkama, P., Vesikko, L. & Väisänen, S.. (2011). The effect of gypsum on phosphorus losses at the catchment scale. Finnish Environment 33.

  8. Foy, R. H., Withers, P. J. A..(1995). The contribution of agricultural phosphorus to eutrophication, Fertil. Soc., Proc. no. 365, 32 pp.

  9. Gonzales-Inca, C. A., Lepistö, A. & Huttula, T..(2016). Trend detection in water-quality and load time-series from agricultural catchments of Yläneenjoki and Pyhäjoki, SW Finland. Boreal Environment Research. 21 (in press).

  10. Granlund, K., Räike, A., Ekholm, P., Rankinen, K., & Rekolainen, S. (2005). Assessment of water protection targets for agricultural nutrient loading in Finland. Journal of Hydrology, 304(1–4), 251–260.

    CAS  Article  Google Scholar 

  11. Heathwaite, A. L., Burt, T. P., & Trudgill, S. T. (1993). Overview – the nitrate issue. In T. P. Burt, A. L. Heathwaite, & S. T. Trudgill (Eds.), Nitrate: processes, patterns and management (pp. 3–21). Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  12. Helcom. (2004). The fourth Baltic Sea pollution load compilation (PLC 4). Baltic Sea Environment Proceedings No. 93.

  13. Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20, 727–732.

    Article  Google Scholar 

  14. Hägg, H. E., Lyon, S. W., Wällstedt, T., Mörth, C. M., Claremar, B., & Humborg, C. (2014). Future nutrient load scenarios for the Baltic Sea due to climate and lifestyle changes. Ambio, 43(3), 337–351.

    Article  Google Scholar 

  15. Iital, A., Klõga, M., Pihlak, M., Pachel, K., Zahharov, A., & Loigu, E. (2013). Nitrogen content and trends in agricultural catchments in Estonia. Agriculture, Ecosystems and Environment, 198, 44–53.

    Article  Google Scholar 

  16. IPCC. (2013). In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  17. Joensuu, S., Ahti, E., & Vuollekoski, M. (2001). Long-term effects of maintaining ditch networks on runoff water quality. Kunnostusojituksen pitkän ajan vaikutus valumaveden ominaisuuksiin. Suo - Mires and Peat, 52(1), 17–28 [In Finnish].

    Google Scholar 

  18. Kauppila, P., & Koskiaho, J. (2003). Evaluation of annual loads of nutrients and suspended solids in Baltic rivers. Nordic Hydrology, 34, 203–220.

    CAS  Google Scholar 

  19. Keinänen, H..(2013). Ilmastovaihteluiden ja metsätaloustoimenpiteiden vaikutukset pienten metsäisten valuma-alueiden veden fysikaalis-kemialliseen laatuun. Pro gradu. Helsingin yliopisto. Geotieteiden ja maantieteen laitos; 84 p. [In Finnish].

  20. Korhonen, J., & Kuusisto, E. (2010). Long-term changes in the discharge regime in Finland. Hydrology Research, 41(3–4), 253–268.

    Article  Google Scholar 

  21. Kortelainen, P., & Saukkonen, S. (1998). Leaching of nutrients, organic carbon and iron from Finnish forestry land. Water, Air and Soil Pollution, 105, 239–250.

    CAS  Article  Google Scholar 

  22. Koskiaho, J., Kivisaari, S., Vermeulen, S., Kauppila, R., Kallio, K., & Puustinen, M. (2002). Reduced tillage: influence on erosion and nutrient losses in a clayey field in southern Finland. Agricultural and Food Science in Finland, 11(1), 37–50.

    Google Scholar 

  23. Koskiaho, J., Lepistö, A., Tattari, S., & Kirkkala, T. (2010). On-line measurements provide more accurate estimates of nutrient loading: a case of the Yläneenjoki river basin, Southwest Finland. Water Science and Technology, 62(1), 115–122 http://www.iwaponline.com/wst/06201/wst062010115.htm.

    CAS  Article  Google Scholar 

  24. Kronvang, B., Grant, R., Larsen, S. E., Svendsen, L. M., & Kristensen, P. (1995). Non-point-source nutrient losses to the aquatic environment in Denmark: impact of agriculture. Marine and Freshwater Research, 46, 167–177.

    CAS  Google Scholar 

  25. Kyllmar, K., Carlsson, C., Gustafson, A., Ulén, B., & Johnsson, H. (2006). Nutrient trends from small agricultural catchments in Sweden. Characterisation and trends. Agriculture. Ecosystems and Environment, 115, 15–26.

    CAS  Article  Google Scholar 

  26. Kyllmar, K., Bechmann, M., Deelstra, J., Iital, A., Blicher-Mathiesen, G., Jansons, V., Koskiaho, J., & Povilaitis, A. (2014). Long-term monitoring of nutrient losses from agricultural catchments in the Nordic–Baltic region—a discussion of methods, uncertainties and future needs. Agriculture, Ecosystems & Environment, 198, 4–12.

    CAS  Article  Google Scholar 

  27. Lepistö, A., Granlund, K., Kortelainen, P., & Räike, A. (2006). Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland. Science of the Total Environment, 365(1–3), 238–259.

    Article  Google Scholar 

  28. Lepistö, A., Kortelainen, P., & Mattsson, T. (2008). Increased organic C and N leaching in a northern boreal river basin in Finland. Global Biogeochemical Cycles. doi:10.1029/2007GB003175.

    Google Scholar 

  29. Linjama, J., Puustinen, M., Koskiaho, J., Tattari, S., Kotilainen, H., & Granlund, K. (2009). Implementation of automatic sensors for continuous monitoring of runoff quantity and quality in small catchments. Agricultural and Food Science, 18, 417–427.

    Google Scholar 

  30. Linjama, J., Järvinen, J. & Kivinen, Y..(2012). Runoff. In: Korhonen, J. and Haavanlammi, E. (Eds.) Hydrological Yearbook 2006–2010. Suomen Ympäristö. 8.

  31. Lääne, A., Pitkänen, H., Arheimer, B., Behrendt, H., Jarosinski, W., Sarmite, L., Pachel, K., Shekhovtsov, A., Svendsen, L. M. & Valatka, S. (2002). Evaluation of the implementation of the 1988 Ministerial Declaration regarding nutrient load reductions in the Baltic Sea catchment area. Finnish Environment Institute. The Finnish Environment. no. 524, 195 pp.

  32. Mattsson, T., Finer, L., Kortelainen, P., & Sallantaus, T. (2003). Brook water quality and background leaching from unmanaged forested catchments in Finland. Water, Air, and Soil Pollution, 147, 275–297.

    CAS  Article  Google Scholar 

  33. Mattsson, T., Kortelainen, P., Räike, A., Lepistö, A., & Thomas, D. N. (2015). Spatial and temporal variability of organic C and N concentrations and export from 30 boreal rivers induced by land use and climate. Science of the Total Environment, 508, 145–154.

    CAS  Article  Google Scholar 

  34. Metla Forest Statistical Yearbook.(2014). http://www.metla.fi/julkaisut/metsatilastollinenvsk/index-en.htm. (13.7.2015).

  35. Ministry of Agriculture and Forestry. (2004). Horisontaalisen maaseudun kehittämisohjelman väliarviointi. Manner Suomi. [In Finnish]. MMM:n julkaisuja 1. Maa- ja metsätalousministeriö, Helsinki. 272 p.

  36. Näykki, T., Kyröläinen, H., Witick, A., Mäkinen, I., Pehkonen, R., Väisänen, T., Sainio, P. & Luotola, M.. (2013). Quality recommendations for data entered into the environmental administration’s water quality registers: Qualification limits, measurement uncertainties, storage times and methods associated with analytes determined for water. [Abstract in English]. Environmental Administration Guidelines. 4, 54 p.

  37. Pacheco, F. A. L., Varandas, S. G. P., Sanches Fernandes, L. F., & Valle Junior, R. F. (2014). Soil losses in rural watersheds with environmental land use conflicts. Science of Total Environment, 485, 110–120.

    Article  Google Scholar 

  38. Pacheco, F. A. L., & Sanches Fernandes, L. F. (2016). Environmental land use conflicts in catchments: a major cause of amplified nitrate in river water. Science of the Total Environment, 548–549, 173–188.

    Article  Google Scholar 

  39. Pellerin, B. A., Wollheim, W. M., Hopkinson, C. S., McDowell, W. H., Williams, M. R., Vorosmarty, C. J., & Daley, M. L. (2004). Role of developed land use and wetlands on hydrologic dissolved organic nitrogen losses from northeastern US watersheds. Limnology and Oceanography, 49, 910–918.

    CAS  Article  Google Scholar 

  40. Pietiläinen, O.-P., & Rekolainen, S. (1991). Dissolved reactive and total phosphorus load from agricultural and forested basins to surface waters in Finland. Aqua Fennica, 21, 127–136.

    Google Scholar 

  41. Puustinen, M., Tattari, S., Koskiaho, J., & Linjama, J. (2007). Influence of seasonal and annual hydrological variations on erosion and phosphorus transport from arable areas in Finland. Soil & Tillage Research, 93, 44–55.

    Article  Google Scholar 

  42. Rekolainen, S. (1989). Phosphorus and nitrogen load from forest and agricultural areas in Finland. Aqua Fennica, 19, 95–107.

    CAS  Google Scholar 

  43. Rekolainen, S., Ekholm, P., Ulén, B., & Gustafsson, A. (1997). Phosphorus losses from agriculture to surface waters in the Nordic countries. In H. Tunney, O. T. Carton, P. C. Brookes, & A. E. Johnston (Eds.), Phosphorus losses from soil to water (pp. 77–93). Wallingford: CAB International.

    Google Scholar 

  44. Rocha, J., Roebeling, P., & Rial-Rivas, M. E. (2015). Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga catchment using the SWAT model. Science of Total Environment, 536, 48–58.

    CAS  Article  Google Scholar 

  45. Räike, A., Pietiläinen, O.-P., Rekolainen, S., Kauppila, P., Pitkänen, H., Niemi, J., Raateland, A., & Vuorenmaa, J. (2003). Trends of phosphorus, nitrogen and chlorophyll-a concentrations in Finnish rivers and lakes in 1975–2000. The Science of the Total Environment, 310(1–3), 47–59.

    Article  Google Scholar 

  46. Salomon, E., Sundberg, M.. (2012). Implementation and status of priority measures to reduce nitrogen and phosphorus leakage – Summary of country reports. http://www.balticcompass.org/PDF/Reports/SummaryOfCountryReports.pdf Accessed 1 June 2016.

  47. Santos, R. M. B., Sanches Fernandes, L. F., Pereira, M. G., Cortes, R. M. V., & Pacheco, F. A. L. (2015). A framework model for investigating the export of phosphorus to surface waters in forested watersheds: implications to management. Science of the Total Environment, 536, 295–305.

    CAS  Article  Google Scholar 

  48. Saukkonen, S., & Kortelainen, P. (1995). Metsätaloustoimenpiteiden vaikutus ravinteiden ja orgaanisen aineen huuhtoutumiseen. In S. Saukkonen & K. Kenttämies (Eds.), Metsätalouden vesistövaikutuksen ja niiden torjunta (pp. 15–32). Helsinki: METVE-projektin loppuraportti. Suomen ympäristökeskus [In Finnish with English abstract].

    Google Scholar 

  49. Sharpley, A. N., Chapra, S. C., Wedepohl, R., Sims, J. T., Daniel, T. C., & Reddy, K. R. (1994). Managing agricultural phosphorus for protection of surface waters: issues and options. Journal of Environmental Quality, 23, 437–451.

    CAS  Article  Google Scholar 

  50. Stålnacke, P.. 1996. Nutrient loads to the Baltic Sea. PhD thesis, Linköping Studies in Arts and Science. No. 146, 78 pp.

  51. Tamm, C. O., Holmen, H., Popovic, B., & Wiklander, G. (1974). Leaching of plant nutrients from soils as a consequence of forestry operations. Ambio, III(6), 211–221.

    Google Scholar 

  52. Uusi-Kämppä, J., Braskerud, B., Jansson, H., Syversen, N., & Uusitalo, R. (1998). Buffer zones and constructed wetlands as filters for agricultural phosphorus. Journal of Environmental Quality, 29(1), 151–158.

    Article  Google Scholar 

  53. Uusi-Kämppä, J., & Jauhiainen, L. (2010). Long-term monitoring of buffer zone efficiency under different cultivation techniques in boreal conditions. Agriculture, Ecosystems & Environment, 137, 75–85.

    Article  Google Scholar 

  54. Uusitalo, R., Turtola, E., Grönroos, J., Kivistö, J., Mäntylahti, V., Turtola, A., Lemola, R., & Salo, T. (2007). Finnish trends in phosphorus balance and soil test phosphorus. Agricultural and Food Science Finland, 16, 301–316.

    CAS  Article  Google Scholar 

  55. Vagstad, N., Stålnacke, P., Andersen, H. E., Deelstra, J., Jansons, V., Kyllmar, K., Loigu, E., Rekolainen, S., & Tumas, R. (2004). Regional variations in diffuse nitrogen losses from agriculture in the Nordic and Baltic regions. Hydrology and Earth System Sciences, 8, 651–662.

    CAS  Article  Google Scholar 

  56. Valle Junior, R. F., Varandas, S. G. P., Sanches Fernandes, L. F., & Pacheco, F. A. L. (2014). Environmental land use conflicts: a threat to soil conservation. Land Use Policy, 41, 172–185.

    Article  Google Scholar 

  57. Vuorenmaa, J., Rekolainen, S., Lepistö, A., Kenttämies, K., & Kauppila, P. (2002). Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s. Environmental Monitoring and Assessment, 76, 213–248.

    CAS  Article  Google Scholar 

  58. Väänänen R. (2008). Phosphorus retention in forest soils and the functioning of buffer zones used in forestry. University of Helsinki, Department of Forest Ecology. Department of Forest Ecology, Faculty of Agriculture and Forestry. Doctoral Dissertation. doi: 10.14214/df.60.

  59. Windolf, J., Blicher-Mathiesen, G., Carstensen, J., & Kronvang, B. (2012). Changes in nitrogen loads to estuaries following implementation of governmental action plans in Denmark: a paired catchment and estuary approach for analyzing regional responses. Environmental Science & Policy. doi:10.1016/j.envsci.2012.08.009.

    Google Scholar 

Download references

Acknowledgements

We thank personnel of the Regional Environmental Centres for carrying out the sampling and analytical work. We would also like to thank Hannu Sirviö, Yrjö Kivinen and Juha Riihimäki from the Finnish Environment Institute for providing runoff data of small catchments and for GIS map of arable land. In addition, we wish to thank Jussi Vuorenmaa from the Finnish Environment Institute for providing information on the nutrient loss calculations of small catchments for the period 1981-1995. 

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sirkka Tattari.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tattari, S., Koskiaho, J., Kosunen, M. et al. Nutrient loads from agricultural and forested areas in Finland from 1981 up to 2010—can the efficiency of undertaken water protection measures seen?. Environ Monit Assess 189, 95 (2017). https://doi.org/10.1007/s10661-017-5791-z

Download citation

Keywords

  • Long-term monitoring
  • Nutrient loading
  • Trend analyses
  • Water quality
  • Mitigation measures