Advertisement

Levels of persistent organic pollutants in breast milk of Maya women in Yucatan, Mexico

  • Ángel G. Polanco RodríguezEmail author
  • M. Inmaculada Riba López
  • T. Angel DelValls Casillas
  • Jesús Alfredo Araujo León
  • B. Anjan Kumar Prusty
  • Fernando J. Álvarez Cervera
Article

Abstract

In this study, 24 breast milk samples, obtained from rural Maya women, from municipalities of Yucatan, Mexico, were analyzed for organochlorine pesticide (OCP) residues by gas chromatography. Recent studies have shown that Maya communities have a poor perception about the proper usage and handling of OCP. The karstic soil in this area has a high vulnerability to groundwater pollution by the use of OCP in agriculture and livestock activities. The impact of the ecosystem on human health is much more critical due to the prevailing poverty and a very low educational level of these communities. About 30% of the Maya population consumes water directly from contaminated wells and sinkholes, resulting in a chronic exposure to OCP. The samples served to identify and quantify high levels of OCP residues (18.43 mg/kg of heptachlor epoxide and 1.92 mg/kg of endrin in the metropolitan zone; 2.10 mg/kg of dieldrin, 0.117 mg/kg of endosulfan II, 0.103 mg/kg of heptachlor, 0.178 mg/kg of endrin, and 0.127 mg/kg of endrin aldehyde in the main agricultural zone and on the west coast). The detected levels of OCP residues are a major concern and represent a potential risk to women and children in the region. This could be associated with the high rates of cervical uterine and breast cancer mortality in Yucatan. Thus, regulations on the usage of OCP and their enforcement are necessary, and it is important to establish a yearly monitoring program for OCP residues in breast milk and groundwater, as well as to implement health promotion programs for women in particular and the general population in general.

Keywords

Biomonitoring Breast milk Karstic aquifer Pesticides Pollution 

Notes

Acknowledgements

Part of this work was supported by UNESCO/UNITWIN_WiCoP and Erasmus Mundus Joint PHD in Marine and Coastal Management from the University of Cadiz, Spain.

The National Council for Science and Technology (CONACYT) funded this project: Grant 1: M0023-Fomix Yucatán, México. Application S0008-2008-1 “Environment and Health: cervicouterine and breast cancer, factors of risk by agrochemicals and food polluted in the Yucatán State”.

Grant 2: CONACYT, application 132076 “Evaluation of pesticide levels in the Ring of Cenotes: its impact on the ecosystem and public health in the geohydrologic reserve drinking water supply to the city of Mérida and metropolitan area”.

We would like to specially thank the women volunteers who took part in this study and the physicians and hospital staff for their cooperation in gathering the donors and in the collection of samples.

References

  1. Aldaco-Sarvide, F., Pérez-Pérez P., Cervantes-Sánchez, G., Torrecillas-Torres, L., Erazo V., and Aura, E. (2012). Cancer mortality in México 2000–2010: the counting of the damages. Subdirección de Enseñanza e Investigación, Centro Médico Nacional “20 de Noviembre”, ISSSTE, México D.F. Gaceta Mexicana de Oncología, GAMO Vol. 11 Núm. 6.Google Scholar
  2. Anand, M., Singh, J., Siddiqui, M. K., Taneja, A., Patel, D. K., & Mehrotra, P. K. (2013). Organochlorine pesticides in the females suffering from breast cancer and its relation to estrogen receptor status. Journal of Drug Metabolism & Toxicology. doi: 10.4172/2157-7609.1000156 .Accessed 13 Jul 2016Google Scholar
  3. Andrade Hernández, Maria (2010). Biodiversidad y Desarrollo Humano en Yucatán. Cap. 6. Amenazasa la Biodiversidad. PNUD, CONABIO. http://www.seduma.yucatan.gob.mx/biodiversidadyucatan/03Parte2/Capitulo6/01Transformacion_sistemas_naturales.pdf. Accessed 17 May 2016.
  4. Arcega-Cabrera, F., Velázquez-Tavera, N., Fargher, L., Derrien, M., & Noreña-Barroso, E. (2014). Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico. Journal of Contaminant Hydrology, 1(168), 41–49. doi: 10.1016/j.jconhyd.2014.08.007.CrossRefGoogle Scholar
  5. ATSDR (2005). Guidance manual. Public Health Assessment. Agency for Toxic Substances and Disease Registry. http://www.atsdr.cdc.gov/hac/PHAManual/toc.html. Accessed 8 March 2016.
  6. Bautista, F., Aguilar, D. Y., & Batllori, S. E. (2011). Amenazas, vulnerabilidad y riesgos de contaminación de las aguas subterráneas de la Península de Yucatán. Teoría y Praxis, 9, 9–13.Google Scholar
  7. Bedi, J. S., Gill, J. P. S., Aulakha, R. S., Kaura, P., Sharmaa, A., & Pooni, P. A. (2013). Pesticide residues in human breast milk: risk assessment for infants from Punjab, India. Science of the Total Environment, 463–464, 720–726.CrossRefGoogle Scholar
  8. Botella, B., Crespo, J., & Rivas, A. (2004). Exposure of women to organochlorine pesticides in southern Spain. Environmental Research, 96, 34–40.CrossRefGoogle Scholar
  9. Briggs, D. (2003). Environmental pollution and the global burden of disease. British Medical Bulletin, 68, 1–24.CrossRefGoogle Scholar
  10. Bulut, S., Feyza, E. S., Konuk, M., & Mustafa, C. (2010). The organochlorine pesticide residues in the drinking waters of Afyonkarahisar, Turkey. Ekoloji, 19(74), 24–31.Google Scholar
  11. Chávez-Almazán, L. A., Diaz-Ortiz, J., Alarcón-Romero, M., Dávila-Vazquez, G., Saldarriaga-Noreña, H., & Waliszewski, S. M. (2014). Organochlorine pesticide levels in breast milk in Guerrero, México. Bulletin of Environmental Contamination and Toxicology, 93(3), 294–298.CrossRefGoogle Scholar
  12. Cohn, B. A., La Merrill, M., Krigbaum, N. Y., Yeh, G., Park, J.-S., Zimmermann, L., & Cirillo, P. M. (2015). DDT exposure in utero and breast cancer. Journal of Clinical Endocrinology and Metabolism, 100(8), 2865–2872.CrossRefGoogle Scholar
  13. CONAPO, 2010. Consejo Nacional de Población. Índice de Marginación por Entidad Federativa. http://www.conapo.gob.mx/work/models/CONAPO/indices_margina/mf2010/CapitulosPDF/1_4.pdf. Accessed 17 Jun 2016.
  14. CONEVAL (2010). Secretaría de Desarrollo Social. Informe Anual Sobre la Situación de Pobreza y Rezago Social. Consejo Nacional de Evaluación de la Política de Desarrollo Social http://www.sedesol.gob.mx/work/models/SEDESOL/Informes_pobreza/2014/Municipios/Yucatan/Yucatan_041.pdf. Accessed 5 Sep 2016.
  15. Dahmardeh, B. R., Esmaili, S. A., Bahramifarc, N., Naghdid, F., & Shahriyaria, A. R. (2009). Organochlorine pesticide and polychlorinated biphenyl residues in human milk from Tabriz, Iran. Toxicological & Environmental Chemistry, 91(8), 1455–1468.CrossRefGoogle Scholar
  16. De la Vara-Salazar, E., Suárez-López, L., Ángeles-Llerenas, A., Torres-Mejía, G., & Lazcano-Ponce, E. (2011). Tendencias de la mortalidad por cáncer de mama en México, 1980-2009. Salud Pública de México, 53, 5.Google Scholar
  17. Derrien, M., Árcega Cabrera, F., Velázquez Tavera, N. L., Kantún Manzano, C. A., & Capella Vizcaíno, S. (2015). Sources and distribution of organic matter along the Ring of Cenotes, Yucatan. Mexico: Sterol markers and statistical approaches. Science of The Total Environment. Volume, 511, 223–229.Google Scholar
  18. Díaz-Barriga, F., Borja-Aburto, V., & Waliszewski, S. (2003). DDT in México. In H. Fiedler (Ed.), The handbook of environmental chemistry, Part O. Persistent Organic Pollutants (Vol. 3, p. 372). Berlin: Springer.Google Scholar
  19. Eastmod, A. and García, A. (2011). Impacto de los sistemas agropecuarios sobre la biodiversidad. En: Biodiversidad y Desarrollo Humano en Yucatán. ISBN 978–607–7823-05-6Z. http://www.cicy.mx/Documentos/CICY/Sitios/Biodiversidad/pdfs/Cap2/15 Impacto de los sistemas agropecuarios.pdf. Accessed 7 Feb 2016.
  20. FAO/WHO (2013). Codex Alimentarius. Pesticides Residues in Food and Feed. http://www.codexalimentarius.net/pestres/data/pesticides/details.html?id=1. Accessed 9 Sep 2016.
  21. George, J., & Shukla, Y. (2011). Pesticides and cancer: insights into toxicoproteomic-based findings. Journal of Proteomics, 74(12), 2713–2722.CrossRefGoogle Scholar
  22. ICH (2005). International Conference on Harmonisation harmonised tripartite guideline, Validation of analytical procedures: text and methodology Q2 (R1). http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed 7 March 2016.
  23. INEGI (2010). México en cifras, Kanasin. Instituto Nacional de Estadística, Geografía e Informática. http://www3.inegi.org.mx/sistemas/mexicocifras/default.aspx?e=31. Accessed 13 Sep 2016.
  24. INEGI (2013). Instituto Nacional de Estadística, Geografía, e Informática. Superficie cosechada de pastos. http://www3.inegi.org.mx/sistemas/mexicoencifras/default.aspx?e=31. Accessed 7 May 2016
  25. Kaushik, C. P., Sharma, H. R., & Kaushik, A. (2012). Organochlorine pesticide residues in drinking water in the rural areas of Haryana, India. Environmental Monitoring Assessment, 184(1), 103–112.CrossRefGoogle Scholar
  26. Knaul, F., Bhadelia, A., Gralow, J., Arreola-Ornelas, H., Langer, A. y Frenk, J. (2012). Meeting the emerging challenge of breast and cervical cancer in low- and middle-income countries. International Journal of Gynecology and Obstetrics, 119, 85–88. http://tomateloapecho.org.mx/Pdfs/Knaul_Badhelia_Gralow_Inter J Gynecology and Obstetrics 2012 web.pdf. Accessed 10 Aug 2016.
  27. Landau-Ossondo, M., Rabia, N., Jos-Pelage, J., Marquet, L. M., Isidore, Y., Saint-Aimé, C., Martin, M., Irigaray, P., & Belpomme, D. (2009). Why pesticides could be a common cause of prostate and breast cancers in the French Caribbean Island, Martinique. An overview on key mechanisms of pesticide-induced cancer. Biomedicine and Pharmacotherapy, 63(6), 383–395.CrossRefGoogle Scholar
  28. Liu, J., & Schelar, E. (2012). Pesticide exposure and child neurodevelopment: summary and implications. Workplace Health Safety, 60(5), 235–242.Google Scholar
  29. Matisová, E., & Hrouzková, S. (2012). Analysis of endocrine disrupting pesticides by capillary GC with mass spectrometric detection. International Journal of Environmental Research and Public Health, 9(9), 3166–3196.CrossRefGoogle Scholar
  30. Marin, L. E., & Perry, E. C. (1994). The hydrology and contamination potential of northwestern Yucatán, México. Geofísica Internacional, 33(4), 619–623.Google Scholar
  31. Marín, L. E., Steinich, B., Pacheco, J., & Escolero, O. A. (2000). Hydrogeology of a contaminated sole-source karst aquifer, Mérida, Yucatán, México. Geofisica Internacional, 39(4), 359–365.Google Scholar
  32. Mnif, W., Hassine, A. I. H., Bouaziz, A., Bartegi, A., Thomas, O., & Roig, B. (2011). Effect of endocrine disruptor pesticides: a review. International Journal of Environmental Research and Public Health, 8(6), 2265–2303.CrossRefGoogle Scholar
  33. Mustafa, A. M. (2010). Endocrine disrupting chemicals (EDCs): it’s impact on health. Health and the Environment Journal, 1, 1.Google Scholar
  34. Noyes, P. D., McElwee, M. K., Miller, H. D., Clark, B. W., Van Tiem, L. A., Walcott, K. C., Erwin, K. N., & Levin, E. D. (2009). The toxicology of climate change: environmental contaminants in a warming world. Environment International, 35(6), 971–986.CrossRefGoogle Scholar
  35. Olurominiyi, O. I. (2006). Egyptian farmers´ attitudes and behaviors regarding agricultural pesticides: implications for pesticide risk communication. Risk Analysis, 26(4), 2006.Google Scholar
  36. OPS (2012). El cáncer de mama en las Américas. Organización Panamericana de la Salud http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&gid=17926&Itemid=. Accessed 10 May 2016.
  37. Orellana, L.R. (2011). Observatorio para el Cambio Climático de Yucatán OCCY. http://www.cambioclimatico.yucatan.gob.mx/descargas/index.php. Accessed 11 Jul 2016.
  38. Pérez, N., Alvarado, J., Castillo, M., González, R., & Quintanilla, M. (2012). Efectos reproductivos en agricultores expuestos a plaguicidas en Muna, Yucatán. In Género, ambiente y contaminación por sustancias químicas (pp. 79–89). México: SEMARNAT, INECC.Google Scholar
  39. Polanco Rodríguez, A. G., Alberto, J. A., Sánchez, J. S., Rejón, G. J. M., Gómez, J. M., & Del Valls Casillas, T. A. (2015a). Contamination by organochlorine pesticides in the aquifer of the ring of cenotes in Yucatán, México. Water and Environment Journal, 29, 140–150.CrossRefGoogle Scholar
  40. Polanco Rodríguez, A. G., Riba, L., Inmaculada, M., Del Valls, C., Angel, T., Quattrocchi, P., Cervera, A., Fernando, J., Sánchez, S., Francisco, J., Jorge, A., & Alberto, N. (2015b). Risk perception and chronic exposure to organochlorine pesticides in Maya communities of México. Human and Ecological Risk Assessment: An International Journal, 21(7), 1960–1979.CrossRefGoogle Scholar
  41. Porta, M., Puigdomènech, E., & Ballester, F. (2008). Monitoring concentrations of persistent organic pollutants in the general population: the international experience. Environment International, 34, 546–561.CrossRefGoogle Scholar
  42. Ribas, N. F., Cardo, E., Sala, M., de Muga, M. E., Mazon, C., Verdu, A., Kogevinas, M., Grimalt, J. O., & Sunyer, J. (2003). Breastfeeding, exposure to organochlorine compounds, and neurodevelopment in infants. Pediatrics, 111e, 580–585.CrossRefGoogle Scholar
  43. Rissato, S. R., Galhiane, M. S., Ximenes Valdecir, F., de Andrade, R. M. B., Talamoni Jandira, L. B., Libânio, M., de Almeida, M. V., Apon Benhard, M., & Cavalari, A. A. (2006). Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the northeastern part of São Paulo state, Brazil. Chemosphere, 65(11), 1949–1958.CrossRefGoogle Scholar
  44. Rojas-Squella, X., Santos, L., Baumann, W., Landaetac, D., Jaimesa, A., Correa, J. C., Sarmiento, O. L., & Ramos-Bonilla, J. P. (2013). Presence of organochlorine pesticides in breast milk samples from Colombian women. Chemosphere, 91(6), 733–739.CrossRefGoogle Scholar
  45. SAGAR, (2006). Consumo de plaguicidas en Yucatán. Informe Técnico. Secretaría de Agricultura, Desarrollo Rural, Pesca y Alimentación.Google Scholar
  46. Secretaría de Salud (2000). Situación actual de la malaria y uso del DDT en México. Centro Nacional de Salud Ambiental y Centro de Vigilancia Epidemiológica.Google Scholar
  47. SEDESOL, CONEVAL, (2010a). Informe anual sobre la situación de pobreza y rezago social. Peto. https://www.gob.mx/cms/uploads/attachment/file/47191/Yucatan_058.pdf. Accessed 28 Dec 2016
  48. SEDESOL, CONEVAL, (2010b). Informe anual sobre la situación de pobreza y rezago social. Maxcanú. https://www.gob.mx/cms/uploads/attachment/file/47181/Yucatan_048.pdf. Accessed 28 Dec 2016
  49. SEDESOL, CONEVAL, (2010c). Informe anual sobre la situación de pobreza y rezago social. Kanasín. https://www.gob.mx/cms/uploads/attachment/file/47174/Yucatan_041.pdf. Accessed 28 Dec 2016
  50. Sharpe, R. M., & Irvine, S. D. (2004). How strong is the evidence of a link between environmental chemicals and adverse effects on human reproductive health? BMJ, 21, 328(7437), 447–451.CrossRefGoogle Scholar
  51. SSA (2012). Información para la rendición de cuentas. Instituto Nacional de las Mujeres. Sistema de Indicadores de Género. http://estadistica.inmujeres.gob.mx/testatales/dsp_tar_e_s_pdf. Accessed 13 Nov 2016
  52. SSY (2007). Subdirección de Salud Pública. Servicios de Salud de Yucatán. Information provided by the Health Services of Yucatán from the Government.Google Scholar
  53. Stockholm (2008). Convention on persistent organic pollutants. http://chm.pops.int/default.aspx. Accessed 12 Aug 2016. http://chm.pops.int/default.aspx. Accessed 21 Sep 2016.
  54. Sun, B., Zhang, L., Yang, L., Zhang, F., Norse, D., & Zhu, Z. (2012). Agricultural non-point source pollution in China: causes and mitigation measures. Ambio, 41(4), 370–379.CrossRefGoogle Scholar
  55. Tadevosyan, N. S., Tadevosyan, A. E., & Petrosyan, M. S. (2009). Pesticides application in agriculture of Armenia and their impact on reproductive function in humans. The New Armenian Medical Journal, 3(N 2), 41–48.Google Scholar
  56. UNESCO (2015). Emerging pollutants in water and wastewater. http://en.unesco.org/emergingpollutants. Accessed 16 May 2016.
  57. Waliszewski, S. M., Caba, M., & Herrero-Mercado, M. (2011). Monitoring of organochlorine pesticide residue levels in adipose tissue of Veracruz, México inhabitants. Bulletin of Environmental Contamination and Toxicology, 87, 539–544.CrossRefGoogle Scholar
  58. WHO (2009). World Health Organization. Biomonitoring of breast milk for persistent organic pollutants. http://www.who.int/foodsafety/chem/pops/en. Accessed 3 Apr 2016.
  59. Zeinab, H.M., Al-Targi, Refaat, G., Abou, E.E., and El-Dressi, A.Y. (2011). Organochlorine pesticide residues in human breast milk in El-Gabal Al-Akhdar, Libya. International Conference on Life Science and Technology IPCBEE vol.3. IACSIT Press, Singapore.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Ángel G. Polanco Rodríguez
    • 1
    Email author
  • M. Inmaculada Riba López
    • 2
  • T. Angel DelValls Casillas
    • 2
  • Jesús Alfredo Araujo León
    • 3
  • B. Anjan Kumar Prusty
    • 4
  • Fernando J. Álvarez Cervera
    • 5
  1. 1.Social Medicine and Public Health Department, Regional Research Center “Dr. Hideyo Noguchi”Autonomous University of YucatánMéridaMexico
  2. 2.UNESCO/UNITWIN-WiCoP. Physical Chemistry Department. Faculty of Environmental and Marine SciencesUniversity of CadizCadizSpain
  3. 3.Laboratory of Chromatography. Faculty of ChemistryAutonomous University of YucatánMéridaMexico
  4. 4.Environmental Impact Assessment DivisionGujarat Institute of Desert EcologyBhujIndia
  5. 5.Departamento de Neurociencias, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”Universidad Autónoma de YucatánMéridaMexico

Personalised recommendations