Immobilization and release of copper species from a microstructured polypyrrole matrix

  • M.B. González
  • L.I. Brugnoni
  • D.O. Flamini
  • L.M. Quinzani
  • S.B. SaidmanEmail author


Copper species immobilization in hollow rectangular-sectioned microtubes of polypyrrole (PPy) electrosynthesized on 316L stainless steel was carried out using two different methods. One of them involved the immobilization after the PPy electropolymerization and the other one during the electrosynthesis process. The electrodes modified with copper species were rotated at different speeds in well water under open-circuit potential conditions. The release of copper species from the PPy matrix and the antibacterial activity against Escherichia coli were analyzed. The obtained results demonstrate that the amount of copper species released as well as the bactericidal effects against E. coli increases with rotation speed. The PPy coating modified with copper species after the electropolymerization reaction exhibited the best performance in terms of antibacterial activity and corrosion protection. These electrodes were tested in a lab-scale continuous flow system for well water disinfection.


Copper Polypyrrole Electropolymerization Salicylate Antibacterial activity 



The financial support of the Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT) is gratefully acknowledged.


  1. Abuhijleh, A. L., & Woods, C. (2002). Synthesis, crystal structure and superoxide dismutase mimetic activity of hexakis (N-methylimidazole) copper (II) salicylate. Inorganic Chemistry Communications, 5(4), 269–273.CrossRefGoogle Scholar
  2. Biswas, P., & Bandyopadhyaya, R. (2016). Water disinfection using silver nanoparticle impregnated activated carbon: Escherichia coli cell-killing in batch and continuous packed column operation over a long duration. Water Research, 100, 105–115.CrossRefGoogle Scholar
  3. Brandt, M. J., Johnson, M. K., Elphinston, A. J., & Ratnayaka, D. D. (2016). Twort’s water supply (7 th edition). Disinfection of water. Amsterdam: Elsevier. pp. 475–511Google Scholar
  4. Dankovich, T. A., & Smith, J. A. (2014). Incorporation of copper nanoparticles into paper for point-of-use water purification. Water Research, 63, 245–251.CrossRefGoogle Scholar
  5. González, M. B., & Saidman, S. B. (2011). Electrosynthesis of hollow polypyrrole microtubes with a rectangular cross-section. Electrochemistry Communications, 13(5), 513–516.CrossRefGoogle Scholar
  6. González, M. B., Quinzani, O. V., Vela, M. E., Rubert, A. A., Benítez, G., & Saidman, S. B. (2012). Study of the electrosynthesis of hollow rectangular microtubes of polypyrrole. Synthetic Metals, 162(13–14), 1133–1139.CrossRefGoogle Scholar
  7. González, M. B., & Saidman, S. B. (2012). Corrosion protection properties of polypyrrole electropolymerized onto steel in the presence of salicylate. Progress in Organic Coatings, 75(3), 178–183.CrossRefGoogle Scholar
  8. González, M. B., Brugnoni, L. I., Vela, M. E., & Saidman, S. B. (2013). Silver deposition on polypyrrole films electrosynthesized in salicylate solutions. Electrochimica Acta, 102, 66–71.CrossRefGoogle Scholar
  9. González, M. B., Brugnoni, L. I., Flamini, D. O., Kalleso Pedersen, P., & Saidman, S. B. (2016). Silver release from polypyrrole matrix in well water. Journal of Electroanalytical Chemistry, 765, 105–110.CrossRefGoogle Scholar
  10. Heinze, J., Frontana-Uribe, B. A., & Ludwigs, S. (2010). Electrochemistry of conducting polymers—persistent models and new concepts. Chemical Reviews, 110(8), 4724–4771.CrossRefGoogle Scholar
  11. Inganäs, O., Erlandsson, R., Nylander, C., & Lundström, I. (1984). Proton modification of conducting polypyrrole. Journal of Physics and Chemistry of Solids, 45(4), 427–432.CrossRefGoogle Scholar
  12. Kim, T. N., Feng, Q. L., Kim, J. O., Wu, J., Wang, H., Chen, G. C., & Cui, F. Z. (1998). Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. Journal of Material Science: Materials in Medicine, 9(3), 129–134.Google Scholar
  13. Klasen, H. J. (2000). A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns, 26(2), 131–138.Google Scholar
  14. Koene, L., Hamer, W. J., & de Wit, J. H. W. (2006). Electrochemical behaviour of poly (pyrrole) coatings on steel. Journal of Applied Electrochemistry, 36(5), 545–556.CrossRefGoogle Scholar
  15. Lehr, I. L., & Saidman, S. B. (2007). Corrosion protection of iron by polypyrrole coatings electrosynthesised from a surfactant solution. Corrosion Science, 49(5), 2210–2225.CrossRefGoogle Scholar
  16. Michels, H. T., Noyce, J. O., & Keevil, C. W. (2009). Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Letters in Applied Microbiology, 49(2), 191–195.CrossRefGoogle Scholar
  17. Mîndroiu, M., Ungureanua, C., Raluca Ionb, R., & Cristian Pîrvua, C. (2013). The effect of deposition electrolyte on polypyrrole surface interaction with biological environment. Applied Surface Science, 276, 401–410.CrossRefGoogle Scholar
  18. Pal, S., Joardar, J., & Myong Song, J. (2006). Removal of E. coli from water using surface-modified activated carbon filter media and its performance over an extended use. Environmental Science and Technology, 40(19), 6091–6097.CrossRefGoogle Scholar
  19. Palanisami, N., Prabusankar, G., & Murugavel, R. (2006). A novel dimeric copper salicylate with an undissociated COOH group: synthesis and crystal structure of [Cu2 (HSal) (Sal) (2,2´-bpy)2] (ClO4). Inorganic Chemistry Communications, 9(10), 1002–1006.CrossRefGoogle Scholar
  20. Raffi, M., Mehrwan, S., Bhatti, T. M., Akhter, J. I., Hameed, A., Yawar, W., & Hasan, M. M. (2010). Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Annals of Microbiology, 60, 75–80.CrossRefGoogle Scholar
  21. Spinks, G. M., Dominis, A. J., Wallace, G. G., & Tallman, D. E. (2002). Electroactive conducting polymers for corrosion control. Journal of Solid State Electrochemistry, 6(2), 85–100.CrossRefGoogle Scholar
  22. Sudha, V. B., Ganesan, S., Pazhani, G. P., Ramamurthy, T., Nair, G. B., & Venkatasubramanian, P. (2012). Storing drinking-water in copper pots kills contaminating diarrhoeagenic bacteria. Journal of Health, Population and Nutrition, 30(1), 17–21.CrossRefGoogle Scholar
  23. Tong, G., Yulong, M., Peng, G., & Zirong, X. (2005). Antibacterial effects of the Cu (II)-exchanged montmorillonite on Escherichia coli K88 and Salmonella choleraesuis. Veterinary Microbiology, 105(2), 113–122.CrossRefGoogle Scholar
  24. Vincent, M., Hartemann, P., & Engels-Deutsch, M. (2016). Antimicrobial applications of copper. International Journal of Hygiene and Environmental Health, 219(7), 585–591.CrossRefGoogle Scholar
  25. Weaver, L., Noyce, J. O., Michels, H. T., & Keevil, C. W. (2010). Potential action of copper surfaces on methicillin-resistant Staphylococcus aureus. Journal of Applied Microbiology, 109(6), 2200–2205.CrossRefGoogle Scholar
  26. World Health Organization (WHO) (2003). Water sanitation health. Assessing microbial safety of drinking water. Chapter 1. . Accessed 05 April 2016.
  27. World Health Organization (WHO) (2013). Media centre. Diarrhoeal disease. Fact sheet no. 330. . Accessed 05 April 2016.
  28. Zhang, N., Yu, X., & Hu, J. (2014). Synthesis of copper nanoparticle-coated poly (styrene-co-sulfonic acid) hybrid materials and its antibacterial properties. Materials Letters, 125, 120–123.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • M.B. González
    • 1
  • L.I. Brugnoni
    • 2
  • D.O. Flamini
    • 1
  • L.M. Quinzani
    • 3
  • S.B. Saidman
    • 1
    Email author
  1. 1.Departamento de Ingeniería Química, Instituto de Ingeniería Electroquímica y Corrosión (INIEC)Universidad Nacional del SurBahía BlancaArgentina
  2. 2.Departamento de Biología, Bioquímica y Farmacia, Instituto de Investigaciones Biológicas y Biomédicas del Sur (INBIOSUR)Universidad Nacional del SurBahía BlancaArgentina
  3. 3.Planta Piloto de Ingeniería Química (PLAPIQUI)Universidad Nacional del Sur, CONICETBahía BlancaArgentina

Personalised recommendations