Skip to main content
Log in

Enrichment of stream water with fecal indicator organisms during baseflow periods

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Fecal indicator organisms (FIOs) are generally believed to be present in surface waters due solely to direct deposition of feces or through transport in runoff. However, emerging evidence points toward hyporheic exchange between sediment pore water and the overlying water column during baseflow periods as a source of FIOs is surface waters. The objective of this work was to (a) propose a mass balance-based technique for estimating changes of FIO concentrations in the same volume of water (or “slug”) from the inlet to outlet of stream reaches in baseflow conditions and (b) to use such enumeration to estimate rate of the FIO release to stream water column. Concentrations of Escherichia coli (E. coli) and enterococci were measured in the slug while simultaneously monitoring the movement of a conservative tracer, Br that labeled the slug. Concentrations of E. coli in the slug were significantly larger (P = 0.035, P = 0.001, and P = 0.001, respectively) at the outlet reach in all three replications, while enterococci concentrations were significantly larger in two of three replications (P = 0.001, P < 0.001, and P = 0.602). When estimated without accounting for die-off in water column, FIO net release rates across replications ranged from 36 to 57 cells m−2 s−1 and 43 to 87 cells m−2 s−1 for E. coli and enterococci, respectively. These release rates were 5 to 20% higher when the die-off in water column was taken into account. No diurnal trends were observed in indicator concentrations. No FIO sources other than bottom sediment have been observed during the baseflow period. FIOs are released into stream water column through hyporheic exchange during baseflow periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An, Y. J., Kampbell, D. H., & Breidenbach, J. P. (2002). Escherichia coli and total coliforms in water and sediments at lake marinas. Environmental Pollution, 120, 771–778.

    Article  CAS  Google Scholar 

  • Angier, J. T., McCarty, G. W., & Prestegaard, K. L. (2005). Hydrology of a first-order riparian zone and stream, mid-Atlantic coastal plain, Maryland. Journal of Hydrology, 309, 149–166.

    Article  Google Scholar 

  • Ashbolt, N. J., Grohmann, G. S., & Kueh, S. W. (1993). Significance of specific bacterial pathogens in the assessment of polluted receiving waters of Sydney, Australia. Water Science and Tecnology, 27, 449–452.

    Google Scholar 

  • Berg H.C. (1993). Random walks in biology. Princeton University Press.

  • Blaustein, R. A., Pachepsky, Y., Hill, R. L., Shelton, D. R., & Whelan, G. (2013). E. coli survival in waters: temperature dependence. Water Research, 47(2), 569–578.

    Article  CAS  Google Scholar 

  • Brinkmeyer, R., Amon, R. M., Schwarz, J. R., Saxton, T., Roberts, D., Harrison, S., Ellis, N., Fox, J., Diguardi, K., Hochman, M., & Duan, S. (2015). Distribution and persistence of Escherichia coli and enterococci in stream bed and bank sediments from two urban streams in Houston, TX. Science of the Total Environment, 502, 650–658.

    Article  CAS  Google Scholar 

  • Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R., & Harwood, V. J. (2012). Enterococci in the environment. Microbiology and Molecular Biology Reviews, 76, 685–706.

    Article  CAS  Google Scholar 

  • Chandran, A., Varghese, S., Kendeler, E., Thomas, A., Hatha, M., & Mazumder, A. (2011). An assessment of potential public health risk associated with the extended survival of indicator and pathogenic bacteria in freshwater lake sediments. International Journal of Hygiene and Environmental Health, 214, 258–264.

    Article  Google Scholar 

  • Cho, K. H., Pachepsky, Y. A., Kim, J. H., Guber, A., Shelton, D. R., & Rowland, R. (2010). Release of Escherichia coli from the bottom sediment in a first-order creek: experiment and reach-specific modeling. Journal of Hydrology, 391, 322–332.

    Article  Google Scholar 

  • Davies, C. M., Long, J. A., Donald, M., & Ashbolt, N. J. (1995). Survival of fecal microorganisms in marine and freshwater sediments. Journal of Applied and Environmental Microbiology, 61, 1888–1896.

    CAS  Google Scholar 

  • Davies-Colley, R.J. (2007). Storm flushing of faecal pollution from land sources. Retrieved from: http://icm.landcareresearch.co.nz/knowledgebase/publications/public/ICMSS_RobDC_2007_shellfish_draft_only.pdf on April 15th 2016.

  • Desmarais, T. R., Solo-Gabriele, H. M., & Palmer, C. J. (2002). Influence of soil on fecal indicator organisms in a tidally influenced subtropical environment. Applied and Environmental Microbiology, 68, 1165–1172.

    Article  CAS  Google Scholar 

  • Droppo, I. G., Liss, S. N., Williams, D., Nelson, T., Jaskot, C., & Trapp, B. (2009). Dynamic existence of waterborne pathogens within river sediment compartments. Implications for water quality regulatory affairs. Environmental Science and Technology, 43, 1737–1743.

    Article  CAS  Google Scholar 

  • Evanson, M., & Ambrose, R. E. (2006). Sources and growth dynamics of fecal indicator bacteria in a coastal wetland system and potential impacts to adjacent waters. Water Research, 40, 475–486.

    Article  CAS  Google Scholar 

  • Garzio-Hadzick, A., Shelton, D. R., Hill, R. L., Pachepsky, Y. A., Guber, A. K., & Rowland, R. (2010). Survival of manure-borne E. coli in streambed sediment: effect of temperature and sediment properties. Water Research, 44, 2753–2762.

    Article  CAS  Google Scholar 

  • Gerba, C. P., & McLeod, J. S. (1976). Effect of sediments on the survival of Escherichia coli in marine waters. Journal of Applied and Environmental Microbiology, 32, 114–120.

    CAS  Google Scholar 

  • Ghimire, B., & Deng, Z. (2013). Hydrograph-based approach to modeling bacterial fate and transport in rivers. Water Resources, 47, 1329–1343.

    CAS  Google Scholar 

  • Grant, S. B., Litton-Mueller, R. M., & Ahn, J. H. (2011). Measuring and modeling the flux of fecal bacteria across the sediment-water interface in a turbulent stream. Water Resources Research, 47, W05517.

    Article  Google Scholar 

  • Guber, A. K., Pachepsky, Y. A., Shelton, D. R., & Yu, O. (2009). Association of fecal coliforms with soil aggregates: effect of water content and bovine manure application. Soil Science, 174, 543–548.

    Article  CAS  Google Scholar 

  • Guber, A. K., Karns, J. S., Pachepsky, Y. A., Sadeghi, A. M., Van Kessel, J. S., & Dao, T. H. (2007). Comparison of release and transport of manure-borne Escherichia coli and enterococci under grass buffer conditions. Letters in Applied Microbiology, 44(2), 161–167.

  • Hood, M. A., & Ness, G. E. (1982). Survival of Vibrio cholerae and Escherichia coli in estuarine waters and sediments. Applied and Environmental Microbiology, 43, 578–584.

    CAS  Google Scholar 

  • Jamieson, R. C., Gordon, R. J., Tattrie, S. C., & Stratton, G. W. (2003). Sources and persistence of fecal coliform bacteria in a rural watershed. Water Quality Research Journal of Canada, 38, 33–47.

    CAS  Google Scholar 

  • Jamieson, R. C., Joy, D. M., Lee, H., Kostaschuk, R., & Gordon, R. J. (2005). Resuspension of Sediment-Associated in a Natural Stream. Journal of Environment Quality, 34(2), 581.

  • Jeng, H. C., England, A. J., & Bradford, H. B. (2005). Indicator organisms associated with stormwater suspended particles and estuarine sediment. Journal of Environmental Science and Health, 40, 779–791.

    Article  CAS  Google Scholar 

  • Kim, J. W., Pachepsky, Y. A., Shelton, D. R., & Coppock, C. (2010). Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT. Ecological Modelling, 221, 1592–1604.

    Article  Google Scholar 

  • Muirhead, R. W., Collins, R. P., & Bremer, P. J. (2005). Erosion and subsequent transport state of Escherichia coli from cowpats. Applied and Environmental Microbiology, 71, 2875–2879.

    Article  CAS  Google Scholar 

  • Ospina-Alvarez, N., Caetano, M., Vale, C., Santos-Echeandía, J., Bernárdez, P., & Prego, R. (2014). Exchange of nutrients across the sediment-water interface in intertidal ria systems (SW Europe). Journal of Sea Research, 85, 349–358. doi:10.1016/j.seares.2013.07.002.

    Article  Google Scholar 

  • Pachepsky, Y. A., & Shelton, D. R. (2011). Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Critical Reviews in Environmental Science and Technology, 41, 1067–1110.

    Article  CAS  Google Scholar 

  • Piorkowski, G., Jamieson, R., Bezanson, G., Hansen, L. T., & Yost, C. (2014). Reach specificity in sediment E. coli population turnover and interaction with waterborne populations. Science of the Total Environment, 496, 402–413.

    Article  CAS  Google Scholar 

  • Shelton, D. R., Pachepsky, Y., Kiefer, L. A., Blaustein, R., McCarty, G. W., & Dao, T. H. (2014). Response of coliform populations in streambed sediment and water column to changes in nutrient concentrations in water. Water Research, 59, 316–324.

    Article  CAS  Google Scholar 

  • Stocker, M. D., Rodriguez-Valentin, J. G., Pachepsky, Y. A., & Shelton, D. R. (2016). Spatial and temporal variation of fecal indicator organisms in two creeks in Beltsville, Maryland. Water Quality Research Journal of Canada, 51, 167–179.

    Article  CAS  Google Scholar 

  • Tyrrel, S. F., & Quinton, J. N. (2003). Overland flow transport of pathogens from agricultural land receiving faecal wastes. Journal of Applied Microbiology, 94, 87s–93s.

    Article  Google Scholar 

  • U.S. EPA (2014). National summary of impaired waters and TMDL information. Retrieved from: https://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=T#status_of_data on April 15th 2016.

  • U.S. EPA (2012). Recreational Water Quality Criteria. United States Environmental Protection Agency. Technical Report EPA-820F-12-058. Washington, D.C., USA.

  • Van der Mei, H. C., Meinders, J. M., & Busscher, H. J. (1994). The influence of ionic strength and pH on diffusion of micro-organisms with different structural surface features. Microbiology, 140, 3413–3419.

    Article  CAS  Google Scholar 

  • Van Donsel, D. J., & Geldreich, E. E. (1971). Relationships of salmonellae to fecal coliforms in bottom sediments. Water Research, 5, 1079–1087.

    Article  Google Scholar 

  • Wade, T. J., Pai, N., Eisenberg, J. N. S., & Colford Jr., J. M. (2003). Do U.S. Environmental Protection Agency water quality guidelines for recreational waters prevent gastrointestinal illness? A systematic review and meta-analysis. Environmental Health Perspectives, 111, 1102–1109.

    Article  Google Scholar 

  • Yakirevich, A., Pachepsky, Y. A., Guber, A. K., Gish, T. J., Shelton, D. R., & Cho, K. H. (2013). Modeling transport of Escherichia coli in a creek during and after artificial high-flow events: three-year study and analysis. Water Research, 47, 2676–2688.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful for the support from the USDA Natural Resource Career Tracks Puerto Rico extended to Manuel Olmeda Saldaña.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakov Pachepsky.

Electronic supplementary material

ESM 1

(PDF 989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachepsky, Y., Stocker, M., Saldaña, M.O. et al. Enrichment of stream water with fecal indicator organisms during baseflow periods. Environ Monit Assess 189, 51 (2017). https://doi.org/10.1007/s10661-016-5763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5763-8

Keywords

Navigation