Skip to main content

Live diatoms as indicators of urban stormwater runoff

Abstract

Diatom bioassessment of streams/rivers does not distinguish between live (cells with intact chloroplasts) and dead (empty cells) individuals, even though most diatom samples collected from the field will be composed of a mixture of both. This study aimed to evaluate whether percentage of live diatoms (PLD), live diatom density and chlorophyll a, and diatom species compositions can be used as indicators of hydrologic disturbance in an urban stream. We deployed artificial substrates on a monthly basis and collected periphyton samples weekly over the course of one calendar year (n = 182) in three tributaries of urbanized Ruddiman Creek (Michigan, USA). We also collected samples before and after six major storm events (>0.5 cm rain). We found no temporal patterns in PLD (Mann-Kendall test p > 0.05) or species composition (non-metric multidimensional scaling (NMDS) ordination), which may be explained by a diatom composition already tolerant to frequent disturbance. There was no difference in PLD before and after storm events, which might partially be explained by their disturbance resistance due to different assemblage ages (1, 2, and 4 weeks old) before the storms. High flow had differential effects on diatom species; loosely attached Navicula and Nitzschia species were more easily removed compared to stalk-forming Gomphonema parvulum. The most important environmental variable that was found to affect live diatom density and chlorophyll was stream width, which has an indirect effect (as a measure of discharge) on periphyton assemblages. In conclusion, PLD was found to be unsuitable metric for assessing stormwater runoff in urban streams where periphyton may not have enough time to form mature communities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • American Public Health Association (APHA), American Waterworks Association, and Water Pollution Control Federation (1999). Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association.

    Google Scholar 

  • Bahls, L. L. (1993). Periphyton bioassessment methods for Montana streams. Water Quality Bureau. Helena, MT: Department of Health and Environmental Sciences.

  • Baker, D. B., Richards, P., Loftus, T. L., & Kramer, J. W. (2004). A new flashiness index: characteristics and applications to Midwestern rivers and streams. Journal of the American Water Resources Association, 40, 503–522.

    Article  Google Scholar 

  • Barbour, M. T., Gerritsen, J., Snyder, B. D., & Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, Second edition. EPA 841-B-99-002. Washington, D.C.: U.S. Environmental Protection Agency; Office of Water.

  • Bray, J. R. & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27, 325–349.

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Monterey, California: Wadsworth International Group.

    Google Scholar 

  • Brown, L. R., Burton, C. A., & Belitz, K. (2005). Aquatic asemblages of the highly urbanized Santa Ana River basin, California. In L. R. Brown, R. H. Gray, R. M. Hughes, & M. R. Meador (eds.), Effects of urbanization on stream ecosystems. American Fisheries Society Symposium, Bethesda, Maryland 47:263–287, 7 February 2016.

  • Brown, L. R., Cuffney, T. F., Coles, J. F., Fitzpatrick, F., McMahon, G., Steuer, J., Bell, A. H., & May, J. T. (2009). Urban streams across the USA: lessons learned from studies in 9 metropolitan areas. Journal of the North American Benthological Society, 28(4), 1051–1069.

    Article  Google Scholar 

  • Bryant, W. L., & Carlisle, D. M. (2012). The relative importance of physicochemical factors to stream biological condition in urbanizing basins: evidence from multimodel inference. Journal of Freshwater Science, 31(1), 154–166.

  • Burton, C. A., Brown, L. R., & Belitz, K. (2005). Assessing water source and channel type as factors affecting benthic macroinvertebrate and periphyton assemblages in the highly urbanized Santa Ana River Basin, California. In L. R. Brown, R. H. Gray, R. M. Hughes, & M. R. Meador (Eds.), Effects of urbanization on stream ecosystems (Vol. 47, pp. 239–262). Bethesda, Maryland: American Fisheries Society Symposium.

    Google Scholar 

  • Carlisle, D. M., Hawkins, C. P., Meador, M. R., Potapova, M., & Falcone, J. (2008). Biological assessments of Appalachian streams based on predictive models for fish, macroinvertebrate, and diatom assemblages. Journal of the North American Benthological Society, 27(1), 16–37.

    Article  Google Scholar 

  • Charles, D. F., Knowles, C., & Davis, R. S. (2002). Protocols for the analysis of algal samples collected as part of the U.S. Geological Survey National Water-Quality Assessment Program. Report No. 02–06, Patrick Center for Environmental Research, The Academy of Natural Sciences, Philadelphia, PA. (URL http://diatom.acnatsci.org/nawqa/).

  • Chu, X., & Steinman, A. D. (2009). Combined event and continuous hydrologic modeling with HEC-HMS. ASCE Journal of Irrigation and Drainage Engineering, 135, 119–124.

    Article  Google Scholar 

  • Coles, J. F., Bell, A. H., Scudder, B. C., & Carpenter, K. D. (2009). The effects of urbanization and other environmental gradients on algal assemblages in nine metropolitan areas across the United States. U.S. Geological Survey Scientific Investigations Report 2009–5022, 18 p.

  • Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18(1), 117–143.

  • Cox, E. J. (1998). A rationale and some suggestions for developing rapid biomonitoring techniques using identification of live diatoms. In Proceedings of the 15th International Diatom Symposium: 43–50.

  • Fanta, S. E., Hill, W. R., Smith, T. B., & Roberts, B. J. (2010). Applying the light:nutrient hypothesis to stream periphyton. Freshwater Biology, 55, 931–940.

    Article  CAS  Google Scholar 

  • Genter, R. B. (1996). Ecotoxicology of inorganic chemical stress to algae. In R. J. Stevenson, M. L. Bothwell, & R. L. Lowe (Eds.), Algal ecology: freshwater benthic ecosystems (pp. 404–468). San Diego: Academic Press.

    Google Scholar 

  • Gillett, N., Pan, Y., & Parker, C. (2009). Should only live diatoms be used in the bioassessment of small mountain streams? Hydrobiologia, 620(1), 135–147.

    Article  Google Scholar 

  • Gillett, N., Pan, Y., Manoylov, K. M., & Stevenson, R. J. (2011). The role of live diatoms in bioassessment: a large-scale study of western US streams. Hydrobiologia, 665(1), 79–92.

    Article  CAS  Google Scholar 

  • Hoagland, K. D., Roemer, S. C., & Rosowski, J. R. (1982). Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany, 69(2), 188–213.

    Article  Google Scholar 

  • Johnson, R. E., Tuchman, N. C., & Peterson, C. G. (1997). Changes in the vertical microdistribution of diatoms within a developing periphyton mat. Journal of the North American Benthological Society, 16(3), 503–519.

    Article  Google Scholar 

  • Johnson, K. E., Steinman, A. D., Keiper, W. D., & Ruetz III, C. R. (2011). Biotic responses to low concentration urban road runoff. Journal of the North American Benthological Society, 30, 710–727.

    Article  Google Scholar 

  • King, R. S., Baker, M. E., Kazyak, P. F., & Weller, D. E. (2011). How much is too novel? Stream community thresholds at exceptionally low levels of catchment urbanization. Ecological Applications, 21(5), 1659–1678.

    Article  Google Scholar 

  • Korte, V. L., & Blinn, D. W. (1983). Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. Journal of Phycology, 19(3), 332–341.

    Article  Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1997a). Bacillariophyceae. Naviculaceae. In J. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa, 2/1 (pp. 1–876). Heidelberg-Berlin: Spectrum Akademischer Verlag.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (1997b). Bacillariophyceae. Bacillariaceae, Epithemiaceae, Surirellaceae. In J. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa, 2/2 (pp. 1–610). Heidelberg-Berlin: Spectrum Akademischer Verlag.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (2000). Bacillariophyceae. Centrales, Fragilariaceae, Eunotiaceae. In J. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa, 2/3 (pp. 1–598). Heidelberg-Berlin: Spectrum Akademischer Verlag.

    Google Scholar 

  • Krammer, K., & Lange-Bertalot, H. (2004). Bacillariophyceae. Achnanthaceae. Kritische Erga¨nzungen zu Achnanthes s. l., Navicula s. str., Gomphonema. In J. Ettl, J. Gerloff, H. Heynig, & D. Mollenhauer (Eds.), Süßwasserflora von Mitteleuropa, 2/4 (pp. 1–468). Heidelberg-Berlin: Spectrum Akademischer Verlag.

    Google Scholar 

  • Lange-Bertalot, H. (1979). Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia, 64, 285–303.

    Google Scholar 

  • Lowe, R. L. (1974). Environmental requirements and pollution tolerance of freshwater diatoms. Cincinnati, Ohio: U.S. Environmental Protection Agency, National Environmental Research Center, Office of Research and Development, EPA-670/4–74-005.

  • McFarland, B., Hill, B., & Willingham, W. (1997). Abnormal Fragilaria spp. (Bacillariophyceae) in streams impacted by mine drainage. Journal of Freshwater Ecology, 12, 141–149.

    Article  CAS  Google Scholar 

  • Mulholland, P. J., Steinman, A. D., Palumbo, A. V., Flum, T., & DeAngelis, D. L. (1991). Stability characteristics of lotic ecosystems following a simulated scour event. Journal of the North American Benthological Society, 10, 127–142.

    Article  Google Scholar 

  • Nederveld, L. B. (2009). Sediment remediation impacts on macroinvertebrate community structure: assessing the success of urban stream restoration . Master of Science Thesis, Grand Valley State University.

  • Ogdahl, M. E., Steinman, A. D., Damm, S. J., Rediske, R. R., Schwartz, C. E., Nederveld, L. B., Hoeksema, R. J., & Fredricks, D. J. (2013). Studies to support an implementation-ready TMDL for Ruddiman Creek. https://www.gvsu.edu/wri/director/studies-to-support-ruddiman-creek-implementation-ready-tmdl-66.htm

  • Patrick, R. (1967). The effect of invasion rate, species pool, and size of area on the structure of the diatom community. Proceedings of the National Academy of Sciences, 58, 1335–1342.

    Article  CAS  Google Scholar 

  • Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D., Lazorchak, J. M., McCormick, F. H., Peterson, S. A., Ringold, P. L., Magee, T., & Cappaert, M. (2006). Environmental monitoring and assessment program-surface waters: western pilot study field operations manual for wadeable streams. EPA/620/R-06/003. Washington, D.C.: Office of Research and Development, U.S. Environmental Protection Agency.

  • Peterson, C. G. (1996). Mechanisms of lotic microalgal colonization following space-clearing disturbances acting at different spatial scales. Oikos, 77, 417–435.

    Article  Google Scholar 

  • Peterson, C. G., & Stevenson, R. J. (1989). Substratum conditioning and diatom colonization in different current regimes. Journal of Phycology, 25(4), 790–793.

    Article  Google Scholar 

  • Peterson, C. G., & Stevenson, R. J. (1992). Resistance and resilience of lotic algal communities—importance of disturbance timing and current. Ecology, 73(4), 1445–1461.

    Article  Google Scholar 

  • Peterson, C. G., Hoagland, K. D., & Stevenson, R. J. (1990). Timing of wave disturbance and the resistance and recovery of a freshwater epilithic microalgal community. Journal of the North American Benthological Society, 9(1), 54–67.

  • Potapova, M., & Charles, D. F. (2005). Choice of substrate in algae-based water-quality assessment. Journal of the North American Benthological Society, 24(2), 415–427.

    Article  Google Scholar 

  • Potapova, M. G., Coles, J. F., Giddings, E. M., & Zappia, H. (2005). A comparison of the influences of urbanization in contrasting environmental settings on stream benthic algal assemblages. Effects of urbanization on stream ecosystems. American Fisheries Society Symposium, 47, 333–359.

    Google Scholar 

  • Pryfogle, P. A., & Lowe, R. L. (1979). Sampling and interpretation of epilithic lotic diatom communities. In Wetzel, R. L. (Ed.). Methods and measurements of periphyton communities: a review (pp. 77–89). American Society for Testing and Materials, STP 690.

  • R Development Core Team (2015). R: a language and environment for statistical computing. Vienna, Austria.: R Foundation for Statistical Computing, (URL http://www.R-project.org).

  • Rose, F. L., & Cushing, C. E. (1970). Periphyton: autoradiography of zinc-65 adsorption. Science, 168, 576–577.

    Article  CAS  Google Scholar 

  • Round, F. E. (1998). A problem in algal ecology: contamination of habitats from adjacent communities. Cryptogamie Algologie, 19, 49–55.

    Google Scholar 

  • Sonneman, J. A., Walsh, C. J., Breen, P. F., & Sharpe, A. K. (2001). Effects of urbanization on streams of the Melbourne region, Victoria, Australia. II. Benthic diatom communities. Freshwater Biology, 46(4), 553–565.

    CAS  Google Scholar 

  • Steinman, A. D. (1996). Effects of grazers on freshwater benthic algae. In R. J. Stevenson, M. L. Bothwell, & R. L. Lowe (Eds.), Algal ecology: freshwater benthic ecosystems (pp. 341–373). San Diego: Academic Press.

    Chapter  Google Scholar 

  • Steinman, A. D., & McIntire, C. D. (1986). Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. Journal of Phycology, 22, 352–361.

    Article  Google Scholar 

  • Steinman, A. D., & McIntire, C. D. (1990). Recovery of lotic periphyton communities after disturbance. Environmental Management, 14(5), 589–604.

    Article  Google Scholar 

  • Stevenson, R. J., & Bahls, L. (1999). Periphyton protocols. In M.T. Barbour, J. Gerritsen, B.D. Snyder & J.B. Stribling (Eds.), Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Second edition. EPA 841-B-99–002. Washington, DC: US Environmental Protection Agency, Office of Water, 6.1–6.22.

  • Stevenson, R. J., Peterson, C. G., Kirschtel, D. B., King, C. C., & Tuchman, N. C. (1991). Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology, 27(1), 59–69.

    Article  Google Scholar 

  • Stevenson, R. J., Pan, Y., & Van Dam, H. (2010). Assessing environmental conditions in rivers and streams with diatoms. In J. P. Smol & E. F. Stoermer (eds.), The diatoms: applications for the environmental and earth sciences, 2nd edn (pp. 57–85). Cambridge University Press.

  • Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K. & Norris, R. H. (2006). Setting expectations for the cological condition of streams: the concept of reference condition. Ecological Applications, 16, 1267–1276.

  • Taulbee, W. K., Nietch, C. T., Brown, D., Ramakrishnan, B., & Tompkins, M. J. (2009). Ecosystem consequences of contrasting flow regimes in an urban effects stream mesocosm study. Journal of the American Water Resources Association, 45(4), 907–927.

    Article  CAS  Google Scholar 

  • Tuchman, N. C. (1996). The role of heterotrophy in algae. In R. J. Stevenson, M. L. Bothwell, & R. L. Lowe (eds.), Algal ecology: freshwater benthic ecosystems (pp. 299–319). San Diego: Academic Press.

  • Van Dam, H., Mertens, A., & Sinkeldam, J. (1994). A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28(1), 117–133.

    Article  Google Scholar 

  • Walker, C. E., & Pan, Y. (2006). Using diatom assemblages to assess urban stream conditions. Hydrobiologia, 561, 179–189.

    Article  CAS  Google Scholar 

  • Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society, 24, 706–723.

    Article  Google Scholar 

  • Wehr, J. D., & Sheath, R. G. (2003). Freshwater algae of North America. Ecology and classification. San Diego, California: Academic Press, Elsevier Science, USA.

    Google Scholar 

  • Wenger, S. J., Roy, A. H., Jackson, C. R., Bernhardt, E. S., Carter, T. L., Filoso, S., Gibson, C. A., Hession, W. C., Kaushal, S. S., Martí, E., Meyer, J. L., Palmer, M. A., Paul, M. J., Purcell, A. H., Ramírez, A., Rosemond, A. D., Schofield, K. A., Sudduth, E. B., & Walsh, C. J. (2009). Twenty-six key research questions in urban stream ecology: an assessment of the state of the science. Journal of the North American Benthological Society, 28(4), 1080–1098.

    Article  Google Scholar 

  • Wilson, C. J., & Holmes, R. W. (1981). The ecological importance of distinguishing between living and dead diatoms in estuarine sediments. European Journal of Phycology, 16, 345–349.

    Google Scholar 

  • Winter, J. G., & Duthie, H. C. (1998). Effects of urbanization on water quality, periphyton and macroinvertebrate communities in a Southern Ontario stream. Canadian Water Resources Journal, 23, 245–257.

    Article  Google Scholar 

Download references

Acknowledgements

Project funding was received as a cooperative award from the US Environmental Protection Agency, through the Great Lakes Restoration Initiative. NDG was funded by a Johnson-Hines postdoctoral fellowship and the Community Foundation for Muskegon County. We gratefully acknowledge the following AWRI staff that assisted with the monitoring effort: Mary Ogdahl, Brian Scull, Whitney Nelson, Leah Borns, Eric Tidquist, Jon VanderMolen, and Kurt Thompson who also made the map.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia D. Gillett.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gillett, N.D., Oudsema, M.E. & Steinman, A.D. Live diatoms as indicators of urban stormwater runoff. Environ Monit Assess 189, 37 (2017). https://doi.org/10.1007/s10661-016-5747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-016-5747-8

Keywords

  • Live diatoms
  • Streams
  • Urbanization
  • Bioassessment